Ir al contenido

Documat


Valuación de opciones asiáticas versus opciones europeas con tasa de interés estocástica

  • Ambrosio Ortiz Ramírez [1] ; María Teresa V. Martínez Palacios [1]
    1. [1] Instituto Politécnico Nacional

      Instituto Politécnico Nacional

      México

  • Localización: Contaduría y administración, ISSN 0186-1042, ISSN-e 2448-8410, Vol. 61, Nº. 4, 2016, págs. 629-648
  • Idioma: español
  • DOI: 10.1016/j.cya.2016.06.002
  • Títulos paralelos:
    • Pricing of average value options versus European options with stochastic interest rate
  • Enlaces
  • Resumen
    • español

      Este trabajo propone una metodología para obtener el precio de una opción asiática con subyacente promedio mediante simulación Monte Carlo. Se supone que la tasa de interés es conducida por un proceso de reversión a la media de tipo Vasicek y CIR con parámetros calibrados por máxima verosimilitud. La simulación incluye el remuestreo cuadrático, el cual reduce el uso de recursos computacionales; en particular, el método mejora la generación de la matriz de varianza-covarianza. La metodología propuesta se aplica en la valuación de opciones sobre el precio de AMXL. Los resultados muestran que al comparar los precios de opciones europeas —tanto simulados como con los publicados por MexDer— con sus contrapartes asiáticas, los precios de opciones asiáticas son menores en el caso de opciones de compra y de venta dentro del dinero. Para opciones de venta, los precios simulados fueron menores en todos los casos. Asimismo se encontró que la diferencia se incrementa conforme el plazo al vencimiento de la opción aumenta.

    • English

      This paper proposes a methodology to obtain the price of an Asian option with underlying average through Monte Carlo simulation. It is assumed that the interest rate is driven by a mean reversion process of Vasicek and CIR type with parameters calibrated by maximum likelihood. The simulation includes the quadratic resampling which reduces the use of computational resources, in particular the method improves the generation of variance covariance matrix. The proposed methodology is applied in the valuation of options on the price of AMXL. The results show that by comparing prices of European options, with both simulated and published by MexDer with their Asian counterparts, Asian options prices are lower in the case of call and put options in the money. For put options simulated prices were lower in all cases. Moreover, it was also found that the difference increases as the time to maturity of the option increases.

  • Referencias bibliográficas
    • Angus, J. (1999). A note on pricing derivatives with continuous geometric averaging. Journal of Futures Markets, 19, 845–858, http://dx.doi.org/10.1002/(SICI)1096-9934(199910)19:7<845::AID-FUT6>3.0.CO;2-D.
    • Barraquand, J. (1995). Numerical valuation of high dimensional multivariate European securities. Managment Science, 41(12), 1882–1891. http://dx.doi.org/10.1287/mnsc.41.12.1882
    • Black, F. y Scholes, M. (1973). The pricing of options and corporate liabilities. The Journal of Political Economy, 81(3), 637–654. http://dx.doi.org/10.1086/260062
    • Boyle, P., Broadie, M. y Glasserman, P. (1997). Monte Carlo methods for security pricing. Journal of Economic Dynamics and Control, 21, 1267–1321....
    • Cox, J. C., Ingersoll, J. E. y Ross, S. A. (1985). A theory of the term structure of interest rates. Econometrica, 53(2), 385–407. http://dx.doi.org/10.2307/1911242
    • Dai, M. (2003). One-state variable binomial models for European-American-style geometric Asian options. Quantitative Finance, 3, 288–295....
    • Fouque, J.-P., Papanicolaou, G. y Sircar, R. K. (2000). Derivatives in Financial Markets with Stochastic Volatility. Cambridge University...
    • Fouque, J. P. y Han, C. H. (2003). Pricing Asian options with stochastic volatility. Quantitative Finance, 3, 353–362. http://dx.doi.org/10.1088/1469-7688/3/5/301
    • Glasserman, P. (2003). Monte Carlo methods in financial engineering. New York: Springer-Verlag. http://dx.doi.org/10.1007/978-0-387-21617-1
    • Goldstein, R. y Zapatero, F. (1996). General equilibrium with constant relative risk aversion and Vasicek interest rate. Mathematical Finance,...
    • Kemna, A. y Vorst, A. (1990). A pricing method for options based on average asset values. Journal of Banking and Finance, 14, 113–129. http://dx.doi.org/10.1016/0378-4266(90)90039-5
    • Kim, Y.-J. y Kunitomo, N. (1999). Pricing options under stochastic interest rates: A new approach. Asia-Pacific Financial Markets, 6(1), 49–70....
    • Kim, J.-H., Yoon, J.-H. y Yu, S.-H. (2013). Multiscale stochastic volatility with the Hull-White rate of interest. The Journal of Futures...
    • Kwok, Y. K. y Wong, H. Y. (2000). Currency-translated foreign equity options with path dependent features and their multi-asset extensions....
    • Levy, E. (1992a). Pricing European average rate currency options. Journal of International Money and Finance, 11, 474–491. http://dx.doi.org/10.1016/0261-5606(92)90013-N
    • Levy, E. (1992b). Asian options. En L. Clewlow y C. Strickland (Eds.), Exotic Options: The State of the Art. Washington, DC: International...
    • Linetsky, V. (2004). Spectral expansions for Asian (average price) options. Operations Research, 52(6), 856–867. http://dx.doi.org/10.1287/opre.1040.0113
    • Merton, C. R. (1973). Theory of rational option pricing. Bell Journal of Economics and Management Science, 4(1), 141–183. http://dx.doi.org/10.2307/3003143
    • Overbeck, L. y Rydn, T. (1997). Estimation in the Cox-Ingersoll-Ross model. Econometric Theory, 13(3), 430–461. http://dx.doi.org/10.1017/S0266466600005880
    • Turnbull, S. y Wakeman, L. M. (1991). A quick algorithm for pricing European average options. The Journal of Financial and Quantitative Analysis,...
    • Vasicek, O. (1977). An equilibrium characterization of the term structure. Journal of Financial Economics, 5(2), 177–188. http://dx.doi.org/10.1016/0304-405X(77)90016-2
    • Vecer, J. (2002). Unified pricing of Asian options. Risk, 15, 113–116.
    • Venezia, I. (2010). Asian options. En C. Lee, A. C. Lee, y J. Lee (Eds.), Handbook of Quantitative Finance and Risk Management (pp. 583–586)....
    • Vorst, T. (1992). Prices and Hedge ratios of average exchange rate options. International Review of Financial Analyst, 1, 179–193. http://dx.doi.org/10.1016/1057-5219(92)90003-M
    • Wilmott, P. (2006). Paul Wilmott on Quantitative Finance (2nd edition). England: JohnWiley & Sons.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno