Ir al contenido

Documat


On a class of quasilinear Barenblatt equations

  • Autores: Caroline Bauzet, Jacques Giacomoni, Guy Vallet
  • Localización: Monografías de la Real Academia de Ciencias Exactas, Físicas, Químicas y Naturales de Zaragoza, ISSN 1132-6360, Nº. 38, 2012 (Ejemplar dedicado a: Monique Madaune-Tort), págs. 35-51
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We first investigate the following quasilinear parabolic equation of Barenblatt type, f(·, ∂tu) − pu − ǫ(∂tu) = g in Q = ×]0, T[ u = 0 on 􀀀 = ∂, u(x, 0) = u0(x) in where is a bounded domain with Lipschitz boundary, denoted by 􀀀 in Rd with d ≥ 1, 2d d+2 < p < ∞, ǫ ≥ 0, 0 < T < +∞, u0 ∈ W1,p 0 ( ) and f is a Carath´eodory function which satisfies suitable growth conditions and g ∈ L2(Q). We prove the existence of a weak solution (see definition 1.1) and give some related regularity results. Next, we analyse further the case p = 2 with ǫ = 0. Precisely, we are concerned by the study of a Barenblatt problem involving a stochastic perturbation:

      f ∂t(u − Z t 0 hdw) − u = 0 in Q ×  u = 0 on ∂ , u(x, 0) = u0(x) in where R t 0 hdw denotes the Itˆo integral of h and f : R → R is an increasing bi- Lipschitz continuous function. (,F, P) is the probability space. Under these conditions, we prove the existence and the uniqueness of the weak solution (see definition 1.4).


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno