Ir al contenido

Documat


A limit theorem for moments in space of the increments of Brownian local time

  • Simon Campese [1]
    1. [1] Università di Roma Tor Vergata
  • Localización: Annals of probability: An official journal of the Institute of Mathematical Statistics, ISSN 0091-1798, Vol. 45, Nº. 3, 2017, págs. 1512-1542
  • Idioma: inglés
  • DOI: 10.1214/16-AOP1093
  • Enlaces
  • Resumen
    • We prove a limit theorem for moments in space of the increments of Brownian local time. As special cases for the second and third moments, previous results by Chen et al. [Ann. Prob. 38 (2010) 396–438] and Rosen [Stoch. Dyn. 11 (2011) 5–48], which were later reproven by Hu and Nualart [Electron. Commun. Probab. 15 (2010) 396–410] and Rosen [In Séminaire de Probabilités XLIII (2011) 95–104 Springer] are included. Furthermore, a conjecture of Rosen for the fourth moment is settled. In comparison to the previous methods of proof, we follow a fundamentally different approach by exclusively working in the space variable of the Brownian local time, which allows to give a unified argument for arbitrary orders. The main ingredients are Perkins’ semimartingale decomposition, the Kailath–Segall identity and an asymptotic Ray–Knight theorem by Pitman and Yor.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno