Ir al contenido

Documat


Random walks and isoperimetric profiles under moment conditions

  • Laurent Saloff-Coste [1] ; Tianyi Zheng [2]
    1. [1] Cornell University

      Cornell University

      City of Ithaca, Estados Unidos

    2. [2] Stanford University

      Stanford University

      Estados Unidos

  • Localización: Annals of probability: An official journal of the Institute of Mathematical Statistics, ISSN 0091-1798, Vol. 44, Nº. 6, 2016, págs. 4133-4183
  • Idioma: inglés
  • DOI: 10.1214/15-aop1070
  • Enlaces
  • Resumen
    • Let GG be a finitely generated group equipped with a finite symmetric generating set and the associated word length function |⋅||⋅|. We study the behavior of the probability of return for random walks driven by symmetric measures μμ that are such that ∑ρ(|x|)μ(x)<∞∑ρ(|x|)μ(x)<∞ for increasing regularly varying or slowly varying functions ρρ, for instance, s↦(1+s)αs↦(1+s)α, α∈(0,2]α∈(0,2], or s↦(1+log(1+s))εs↦(1+log⁡(1+s))ε, ε>0ε>0. For this purpose, we develop new relations between the isoperimetric profiles associated with different symmetric probability measures. These techniques allow us to obtain a sharp L2L2-version of Erschler’s inequality concerning the Følner functions of wreath products. Examples and assorted applications are included.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno