Ir al contenido

Documat


Liouville Brownian motion

  • Christophe Garban [2] ; Rémi Rhodes [1] ; Vincent Vargas [1]
    1. [1] Université Paris-Est
    2. [2] Université Lyon 1
  • Localización: Annals of probability: An official journal of the Institute of Mathematical Statistics, ISSN 0091-1798, Vol. 44, Nº. 4, 2016, págs. 3076-3110
  • Idioma: inglés
  • DOI: 10.1214/15-AOP1042
  • Enlaces
  • Resumen
    • We construct a stochastic process, called the Liouville Brownian motion, which is the Brownian motion associated to the metric eγX(z)dz2eγX(z)dz2, γ<γc=2γ<γc=2 and XX is a Gaussian Free Field. Such a process is conjectured to be related to the scaling limit of random walks on large planar maps eventually weighted by a model of statistical physics which are embedded in the Euclidean plane or in the sphere in a conformal manner. The construction amounts to changing the speed of a standard two-dimensional Brownian motion BtBt depending on the local behavior of the Liouville measure “Mγ(dz)=eγX(z)dzMγ(dz)=eγX(z)dz”. We prove that the associated Markov process is a Feller diffusion for all γ<γc=2γ<γc=2 and that for all γ<γcγ<γc, the Liouville measure MγMγ is invariant under PtPt. This Liouville Brownian motion enables us to introduce a whole set of tools of stochastic analysis in Liouville quantum gravity, which will be hopefully useful in analyzing the geometry of Liouville quantum gravity.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno