We formulate analogues, for Noetherian local Q-algebras which are not necessarily regular, of the injectivity part of Gersten’s conjecture in algebraic K-theory and prove them in various cases. Our results suggest that the algebraic K-theory of such a ring should be detected by combining the algebraic K-theory of both its regular locus and the infinitesimal thickenings of its singular locus.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados