Ir al contenido

Documat


Tropical compactification and the Gromov–Witten theory of P1

  • Renzo Cavalieri [1] ; Hannah Markwig [2] ; Dhruv Ranganathan [3]
    1. [1] Colorado State University

      Colorado State University

      Estados Unidos

    2. [2] University of Tübingen

      University of Tübingen

      Landkreis Tübingen, Alemania

    3. [3] Yale University

      Yale University

      Town of New Haven, Estados Unidos

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 23, Nº. 2, 2017, págs. 1027-1060
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We use tropical and non-archimedean geometry to study the moduli space of genus 0, stable maps to P1 relative to two points. This space is exhibited as a tropical compactification in a toric variety. Moreover, the fan of this toric variety may be interpreted as a moduli space for tropical relative stable maps with the same discrete data. As a consequence, we confirm an expectation of Bertram and the first two authors, that the tropical Hurwitz cycles are tropicalizations of classical Hurwitz cycles. As a second application, we obtain a full descendant correspondence for genus 0 relative invariants of P1.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno