Ir al contenido

Documat


Non-negative Matrix Factorisation for Network Reordering

  • Autores: Clare M. Lee, Desmond J. Higham, Daniel Crowther, J. Keith Vass
  • Localización: Monografías de la Real Academia de Ciencias Exactas, Físicas, Químicas y Naturales de Zaragoza, ISSN 1132-6360, Nº. 33, 2010, págs. 39-53
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Non-negative matrix factorisation covers a variety of algorithms that attempt to represent a given, large, data matrix as a sum of low rank matrices with a prescribed sign pattern. There are intuitave advantages to this approach, but also theoretical and computational challenges. In this exploratory paper we investigate the use of non-negative matrix factorisation algorithms as a means to reorder the nodes in a large network. This gives a set of alternatives to the more traditional approach of using the singular value decomposition. We describe and implement a range of recently proposed algorithms and evaluate their performance on synthetically constructed test data and on a real data set arising in cancer research.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno