Ir al contenido

Documat


Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras IV

  • Seok-Jin Kang [3] ; Masaki Kashiwara [1] ; Myungho Kim [4] ; Se-Jin Oh [2]
    1. [1] Kyoto University

      Kyoto University

      Kamigyō-ku, Japón

    2. [2] Ewha Womans University

      Ewha Womans University

      Corea del Sur

    3. [3] Gwanak Wiberpolis 101-1601
    4. [4] Kyunghee University
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 22, Nº. 4 (Special Issue: The Mathematics of Joseph Bernstein), 2016, págs. 1987-2015
  • Idioma: inglés
  • DOI: 10.1007/s00029-016-0267-5
  • Enlaces
  • Resumen
    • Let U q (g) be a twisted affine quantum group of type A(2) N or D(2) N and let g0 be the finite-dimensional simple Lie algebra of type AN or DN . For a Dynkin quiver of type g0, we define a full subcategory C(2) Q of the category of finite-dimensional integrable U q (g)-modules, a twisted version of the category C(1) Q introduced by Hernandez and Leclerc. Applying the general scheme of affine Schur–Weyl duality, we construct an exact faithful KLR-type duality functor F(2) Q : Rep(R) → C(2) Q , where Rep(R) is the category of finite-dimensional modules over the quiver Hecke algebra R of type


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno