Ir al contenido

Documat


A combinatorial formula for affine Hall–Littlewood functions via a weighted Brion theorem

  • Boris Feigin [1] ; Igor Makhlin [2]
    1. [1] Higher School of Economics, National Research University

      Higher School of Economics, National Research University

      Rusia

    2. [2] Landau Institute for Theoretical Physics

      Landau Institute for Theoretical Physics

      Rusia

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 22, Nº. 3, 2016, págs. 1703-1747
  • Idioma: inglés
  • DOI: 10.1007/s00029-016-0223-4
  • Enlaces
  • Resumen
    • We present a new combinatorial formula for Hall–Littlewood functions associated with the affine root system of type A˜n−1, i.e., corresponding to the affine Lie algebra sln. Our formula has the form of a sum over the elements of a basis constructed by Feigin, Jimbo, Loktev, Miwa and Mukhin in the corresponding irreducible representation. Our formula can be viewed as a weighted sum of exponentials of integer points in a certain infinite-dimensional convex polyhedron. We derive a weighted version of Brion’s theorem and then apply it to our polyhedron to prove the formula.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno