Ir al contenido

Documat


Gibbs measures associated to the integrals of motion of the periodic derivative nonlinear Schrödinger equation

  • Giuseppe Genovese [1] ; Renato Lucà [3] ; Daniele Valeri [2]
    1. [1] University of Zurich

      University of Zurich

      Zürich, Suiza

    2. [2] Tsinghua University

      Tsinghua University

      China

    3. [3] CSIC
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 22, Nº. 3, 2016, págs. 1663-1702
  • Idioma: inglés
  • DOI: 10.1007/s00029-016-0225-2
  • Enlaces
  • Resumen
    • We study the one-dimensional periodic derivative nonlinear Schrödinger equation. This is known to be a completely integrable system, in the sense that there is an infinite sequence of formal integrals of motion hk , k ∈ Z+. In each h2k the term with the highest regularity involves the Sobolev norm H˙ k (T) of the solution of the DNLS equation. We show that a functional measure on L2(T), absolutely continuous w.r.t. the Gaussian measure with covariance (I + (−Δ)k )−1, is associated to each integral of motion h2k , k ≥ 1.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno