Ir al contenido

Documat


Diagrammatic description for the categories of perverse sheaves on isotropic Grassmannians

  • Michael Ehrig [1] ; Catharina Stroppel [1]
    1. [1] Universität Bonn
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 22, Nº. 3, 2016, págs. 1455-1536
  • Idioma: inglés
  • DOI: 10.1007/s00029-015-0215-9
  • Enlaces
  • Resumen
    • For each integer k≥4k≥4 , we describe diagrammatically a positively graded Koszul algebra DkDk such that the category of finite dimensional DkDk -modules is equivalent to the category of perverse sheaves on the isotropic Grassmannian of type DkDk or Bk−1Bk−1 , constructible with respect to the Schubert stratification. The algebra is obtained by a (non-trivial) “folding” procedure from a generalized Khovanov arc algebra. Properties such as graded cellularity and explicit closed formulas for graded decomposition numbers are established by elementary tools.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno