Ir al contenido

Documat


Boolean Witt vectors and an integral Edrei–Thoma theorem

  • James Borger [1] ; Darij Grinberg [2]
    1. [1] Australian National University

      Australian National University

      Australia

    2. [2] Massachusetts Institute of Technology

      Massachusetts Institute of Technology

      City of Cambridge, Estados Unidos

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 22, Nº. 2, 2016, págs. 595-629
  • Idioma: inglés
  • Enlaces
  • Resumen
    • A subtraction-free definition of the big Witt vector construction was recently given by the first author. This allows one to define the big Witt vectors of any semiring. Here we give an explicit combinatorial description of the big Witt vectors of the Boolean semiring. We do the same for two variants of the big Witt vector construction: the Schur Witt vectors and the p-typical Witt vectors. We use this to give an explicit description of the Schur Witt vectors of the natural numbers, which can be viewed as the classification of totally positive power series with integral coefficients, first obtained by Davydov. We also determine the cardinalities of some Witt vector algebras with entries in various concrete arithmetic semirings.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno