Ir al contenido

Documat


Bi-Lipschitz homeomorphic subanalytic sets have bi-Lipschitz homeomorphic tangent cones

  • J. Edson Sampaio [1]
    1. [1] Universidade Federal do Ceará

      Universidade Federal do Ceará

      Brasil

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 22, Nº. 2, 2016, págs. 553-559
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We prove that if there exists a bi-Lipschitz homeomorphism (not necessarily subanalytic) between two subanalytic sets, then their tangent cones are bi-Lipschitz homeomorphic. As a consequence of this result, we show that any Lipschitz regular complex analytic set, i.e., any complex analytic set which is locally bi-Lipschitz homeomorphic to an Euclidean ball must be smooth. Finally, we give an alternative proof of S. Koike and L. Paunescu’s result about the bi-Lipschitz invariance of directional dimensions of subanalytic sets.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno