Ir al contenido

Documat


Twists of non-hyperelliptic curves

  • Elisa Lorenzo García [1]
    1. [1] Université de Rennes I
  • Localización: Revista matemática iberoamericana, ISSN 0213-2230, Vol. 33, Nº 1, 2017, págs. 169-182
  • Idioma: inglés
  • DOI: 10.4171/RMI/931
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this paper we present a method for computing the set of twists of a non-singular projective curve defined over an arbitrary (perfect) field k. The method is based on a correspondence between twists and solutions to a Galois embedding problem. When in addition, this curve is non-hyperelliptic we show how to compute equations for the twists. If k=Fq the method then becomes an algorithm, since in this case, it is known how to solve the Galois embedding problems that appear. As an example we compute the set of twists of the non-hyperelliptic genus 6 curve x7−y3−1=0 when we consider it defined over a number field such that [k(ζ21):k]=12. For each twist equations are exhibited.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno