Ir al contenido

Documat


(β,α)− Connectivity Index of Graphs

  • Autores: B. Basavanagoud, Viena R. Desai, Shreekant Patil
  • Localización: Applied Mathematics and Nonlinear Sciences, ISSN-e 2444-8656, Vol. 2, Nº. 1, 2017, págs. 21-30
  • Idioma: español
  • DOI: 10.21042/amns.2017.1.00003
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let Eβ(G) be the set of paths of length β in a graph G. For an integer β≥1 and a real number α, the (β,α)-connectivity index is defined as βχα(G)=∑v1v2⋅⋅⋅vβ+1∈Eβ(G)(dG(v1)dG(v2)...dG(vβ+1))α. The (2,1)-connectivity index shows good correlation with acentric factor of an octane isomers. In this paper, we compute the (2,α)-connectivity index of certain class of graphs, present the upper and lower bounds for (2,α)-connectivity index in terms of number of vertices, number of edges and minimum vertex degree and determine the extremal graphs which achieve the bounds. Further, we compute the (2,α)-connectivity index of line graphs of subdivision graphs of 2D-lattice, nanotube and nanotorus of TUC4C8[p,q], tadpole graphs, wheel graphs and ladder graphs.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno