Ir al contenido

Documat


Fitting a Sobolev function to data III

  • Charles Fefferman [1] ; Arie Israel [2] ; Garving K. Luli [3]
    1. [1] Princeton University

      Princeton University

      Estados Unidos

    2. [2] University of Texas at Austin

      University of Texas at Austin

      Estados Unidos

    3. [3] University of California at Davis
  • Localización: Revista matemática iberoamericana, ISSN 0213-2230, Vol. 32, Nº 3, 2016, págs. 1039-1126
  • Idioma: inglés
  • DOI: 10.4171/RMI/908
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this paper and two companion papers, we produce efficient algorithms to solve the following interpolation problem: Let m≥1 and p>n≥1. Given a finite set E ⊂Rn and a function f: E →R, compute an extension F of f belonging to the Sobolev space Wm,p(Rn) with norm having the smallest possible order of magnitude; secondly, compute the order of magnitude of the norm of F. The combined running time of our algorithms is at most CN log N, where N denotes the cardinality of E, and C depends only on m, n, and p.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno