Ir al contenido

Documat


Exploiting Social Annotations for Resource Classification

  • Autores: Arkaitz Zubiaga Árbol académico, Víctor Fresno Fernández Árbol académico, Raquel Martínez Unanue Árbol académico
  • Localización: Social network mining, analysis, and research trends: techniques and applications / I-Hsien Ting (ed. lit.), Tzung-Pei Hong (ed. lit.), Leon S.L. Wang (ed. lit.), 2012, ISBN 978-1-61350-513-7, págs. 116-130
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • The lack of representative textual content in many resources suggests the study of additional metadata to improve classification tasks. Social bookmarking and cataloging sites provide an accessible way to increase available metadata in large amounts with user-provided annotations. In this chapter, the authors study and analyze the usefulness of social annotations for resource classification. They show that social annotations outperform classical content-based approaches, and that the aggregation of user annotations creates a great deal of meaningful metadata for this task. The authors also present a method to get the most out of the studied data sources using classifier committees.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno