Desde la implantación del Espacio Europeo de Educación Superior (EEES) en los diferentes grados, se ha puesto de manifiesto la necesidad de utilizar diversos mecanismos que permitan tratar la diversidad en el aula, evaluando automáticamente y proporcionando una retroalimentación rápida tanto al alumnado como al profesorado sobre la evolución de los alumnos en una asignatura. En este artículo se presenta la evaluación de la exactitud en las predicciones de GradeForeseer, un recurso docente para la predicción de notas basado en técnicas de aprendizaje automático que permite evaluar la evolución del alumnado y estimar su nota final al terminar el curso. Este recurso se ha complementado con una interfaz de usuario para el profesorado que puede ser usada en diferentes plataformas software (sistemas operativos) y en cualquier asignatura de un grado en la que se utilice evaluación continuada. Además de la descripción del recurso, este artículo presenta los resultados obtenidos al aplicar el sistema de predicción en cuatro asignaturas de disciplinas distintas: Programación I (PI), Diseño de Software (DSW) del grado de Ingeniería Informática, Tecnologías de la Información y la Comunicación (TIC) del grado de Lingüística y la asignatura Fundamentos de Tecnología (FDT) del grado de Información y Documentación, todas ellas impartidas en la Universidad de Barcelona. La capacidad predictiva se ha evaluado de forma binaria (aprueba o no) y según un criterio de rango (suspenso, aprobado, notable o sobresaliente), obteniendo mejores predicciones en los resultados evaluados de forma binaria.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados