Ir al contenido

Documat


Smoothed landmark estimators of the transition probabilities

  • Luís Meira-Machado [1]
    1. [1] Universidade do Minho

      Universidade do Minho

      Braga (São José de São Lázaro), Portugal

  • Localización: Sort: Statistics and Operations Research Transactions, ISSN 1696-2281, Vol. 40, Nº. 2, 2016, págs. 375-398
  • Idioma: inglés
  • Enlaces
  • Resumen
    • One important goal in clinical applications of multi-state models is the estimation of transition probabilities. Recently, landmark estimators were proposed to estimate these quantities, and their superiority with respect to the competing estimators has been proved in situations in which the Markov condition is violated. As a weakness, it provides large standard errors in estimation in some circumstances. In this article, we propose two approaches that can be used to reduce the variability of the proposed estimator. Simulations show that the proposed estimators may be much more efficient than the unsmoothed estimator. A real data illustration is include

  • Referencias bibliográficas
    • Aalen, O. and Johansen, S. (1978). An empirical transition matrix for nonhomogeneous Markov chains based on censored observations. Scandinavian...
    • Akritas, M. (1994). Nearest neighbor estimation of a bivariate distribution under random censoring. The Annals of Statistics, 22, 1299–1327.
    • Akritas, M.G. and van Keilegom, I. (2003). Estimation of bivariate and marginal distributions with censored data, Journal of Royal Statistical...
    • Allignol, A., Beyersmann, J., Gerds, T. and Latouche, A. (2014). A competing risks approach for nonparametric estimation of transition probabilities...
    • Amorim, A., de Uña-Álvarez, J. and Meira-Machado, L. (2011). Presmoothing the transition probabilities in the illness-death model. Statistics...
    • Andersen, P.K. and Keiding, N. (2002). Multi-state models for event history analysis. Statistical Methods Medical Research, 11, 91–115.
    • Beran, R. (1981). Nonparametric Regression with Randomly Censored Survival Data. Technical report, Univ. California, Berkeley.
    • Breslow, N.E. (1972). Discussion of the paper by D. R. Cox. Journal of Royal Statistical Society, B, 34, 216–217.
    • Cao, R. and Jácome, M.A. (2004). Presmoothed kernel density estimator for censored data, Journal of Nonparametric Statistics, 16, 289–309.
    • Cao, R., López-de-Ullibarri, I., Janssen, P. and Veraverbeke N (2005). Presmoothed Kaplan-Meier and Nelson-Aalen estimators, Journal of...
    • Cox, D.R. (1972). Regression models and life tables (with discussion). Journal of the Royal Statistical Society, Series B, 34, 187–200.
    • de Uña-Álvarez, J. and Rodrı́guez-Campos, C. (2004). Strong consistency of presmoothed Kaplan-Meier integrals when covariables are present....
    • de Uña-Álvarez, J. and Amorim, A.P. (2011). A semiparametric estimator of the bivariate distribution function for censored gap times....
    • de Uña-Álvarez, J. and Meira-Machado, L. (2015). Nonparametric estimation of transition probabilities in the non-Markov illness-death...
    • Dikta, G. (1998). On semiparametric random censorship models. Journal of Statistical Planning and Inference, 66, 253–279.
    • Durrleman, S. and Simon, R. (1989). Flexible regression models with cubic splines. Statistics in Medicine, 8, 551–561.
    • Genser, B. and Wernecke, K.D. (2005). Joint modelling of repeated transitions in follow-up data: a case study on breast cancer data. Biometrical...
    • Gentleman, R.C., Lawless, F.F., Lindsey, J.C. and Yan, P. (1994) Multi-state Markov models for analysing incomplete disease history data with...
    • Hosmer, D.W. and Lemeshow, S. (1989). Applied Logistic Regression. New York: Wiley.
    • Jácome, M.A. and Iglesias, M.C. (2008). Presmoothed estimation with left truncated and right censored data. Communications in Statistics/Theory...
    • Jácome, M.A. and Iglesias, M.C. (2010). Presmoothed estimation of the density function with truncated and censored data. Statistics, 44,...
    • Kaplan, E. and Meier, P. (1958). Nonparametric estimation from incomplete observations. em Journal of the American Statistical Association,...
    • López-de-Ullibarri, I. and Jácome, M.A. (2013) survPresmooth: An R Package for Presmoothed Estimation in Survival Analysis. Journal of...
    • Meyer, M.C. (2008) Inference using shape-restricted regression splines, The Annals of Applied Statistics, 2, 1013–1033.
    • Meyer, M.C. (2012) Constrained penalized splines, The Canadian Journal of Statistics, 40, 190–206.
    • Meira-Machado, L., de Uña-Álvarez, J. and Cadarso-Suárez, C. (2006). Nonparametric estimation of transition probabilities in a non-Markov...
    • Meira-Machado, L., de Uña-Álvarez, J., Cadarso-Suárez, C. and Andersen, P.K. (2009). Multi-state models for the analysis of time to...
    • Meira-Machado, L., de Uña-Álvarez, J. and Datta, S. (2015). Nonparametric estimation of conditional transition probabilities in a non-Markov...
    • Meira-Machado, L., Sestelo, M. and Gonlçalves, A. (2016). Nonparametric estimation of the survival function for ordered multivariate failure...
    • Meier-Hirmer, C. and Schumacher, M. (2013). Multi-state model for studying an intermediate event using time-dependent covariates: Application...
    • Moreira, A.C., de Uña-Álvarez, J. and Meira-Machado, L. (2013). Presmoothing the Aalen-Johansen estimator in the illness-death model....
    • Nadaraya, E. (1965). On nonparametric estimates of density functions and regression curves. Theory of Applied Probability, 10, 186–190.
    • Pérez-Ocón, R., Ruiz-Castro, J.E. and Gámiz-Pérez, M.L. (2001). Non-homogeneous Markov models in the analysis of survival after breast...
    • Putter, H, Fiocco, M. and Geskus, R.B. (2007). Tutorial in biostatistics: competing risks and multi-state models. Statistics in Medicine,...
    • Pya, N. and Wood, S.N. (2015) Shape constrained additive models. Statistical Computing, 25, 543–559.
    • Satten, G.A. and Datta, S. (2001). The Kaplan-Meier Estimator as an inverse-probability-of-censoring weighted average. American Statistician,...
    • Sauerbrei, W. and Royston, P. (1999). Building multivariable prognostic and diagnostic models: Transformation of the predictors by using fractional...
    • Schmoor, C., Sauerbrei, W. Bastert, G., and Schumacher, M. (2000). Role of isolated locoregional recurrence of breast cancer: Results of four...
    • Schumacher, M., Bastert, G., Bojar, H., Hiibner, K., Olschewski, M., Sauerbrei, W., Schmoor, C., Beyerle, C., Neumann, R.L.A., and Rauschecker,...
    • van Houwelingen, H.C. (2007). Dynamic prediction by landmarking in event history analysis. Scandinavian Journal of Statistics, 34, 70–85.
    • van Keilegom, I., Akritas, M. and Veraverbeke, N. (2001). Estimation of the conditional distribution in regression with censored data: A comparative...
    • Watson, G.S. (1964). Smooth regression analysis Sankhya, 26, 359–372.
    • Wood, S.N. (2006). Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC Press.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno