Ir al contenido

Documat


Kernel-based estimation of P(X >Y) in ranked set sampling

  • M. Mahdizadeh [1] ; Ehsan Zamanzade [2]
    1. [1] Hakim Sabzevari University

      Hakim Sabzevari University

      Irán

    2. [2] University of Isfahan

      University of Isfahan

      Irán

  • Localización: Sort: Statistics and Operations Research Transactions, ISSN 1696-2281, Vol. 40, Nº. 2, 2016, págs. 243-266
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This article is directed at the problem of reliability estimation using ranked set sampling. A nonparametric estimator based on kernel density estimation is developed. The estimator is shown to be superior to its analog in simple random sampling. Monte Carlo simulations are employed to assess performance of the proposed estimator. Two real data sets are analysed for illustration.

  • Referencias bibliográficas
    • Baklizi, A. and Eidous, O. (2006). Nonparametric estimation of P(X < Y ) using kernel methods. Metron, LXIV, 47–60.
    • Bohn, L.L. and Wolfe, D.A. (1994). The effect of imperfect judgment rankings on properties of procedures based on the ranked-set samples analog...
    • Bowman, A.W. (1984). An alternative method of cross-validation for the smoothing of kernel density estimates. Biometrika, 71, 353–360.
    • Chen, Z. (2007). Ranked set sampling: its essence and some new applications. Environmental and Ecological Statistics, 14, 355–363.
    • Chen, Z., Bai, Z. and Sinha, B.K. (2004). Ranked set sampling: Theory and Applications. Springer, New York.
    • Datta, B.N. (2010). Numerical Linear Algebra and Applications, Second Edition. SIAM.
    • Efron, B. (1979). Bootstrap methods: Another look at the jackknife. Annals of Statistics, 7, 1–26.
    • Kotz, S., Lumelskii, Y. and Pensky, M. (2003). The stress-strength model and its generalizations. Theory and applications. World Scientific,...
    • Mahdizadeh, M. and Arghami, N.R. (2013). Improved entropy based test of uniformity using ranked set sample. SORT, 37, 3–18.
    • McIntyre, G.A. (1952). A method of unbiased selective sampling using ranked sets. Australian Journal of Agricultural Research, 3, 385–390.
    • Modarres, R., Hui, T.P. and Zheng, G. (2006). Resampling methods for ranked set samples. Computational Statistics and Data Analysis, 51, 1039–1050.
    • Murray, R.A., Ridout, M.S. and Cross, J.V. (2000). The use of ranked set sampling in spray deposit assessment. Aspects of Applied Biology,...
    • Muttlak, H.A., Abu-Dayyeh, W.A., Al-Saleh, M.F. and Al-Sawi, E. (2010). Estimating P(Y < X) using ranked set sampling in case of the exponential...
    • Rudemo, M. (1982). Empirical choice of histograms and kernel density estimators. Scandinavian Journal of Statistics, 9, 65–78.
    • Samawi, H.M., Al-Saleh, M.F. and Al-Saidy, O. (2009). The matched pair sign test using bivariate ranked set sampling for different ranking...
    • Scott, D.W. and George, R.T. (1987). Biased and unbiased cross-validation in density estimation. Journal of the American Statistical Association,...
    • Sengupta, S. and Mukhuti, S. (2008). Unbiased estimation of P(X >Y ) using ranked set sample data. Statistics, 42, 223–230.
    • Sheather, S.J. (2004). Density estimation. Statistical Science, 19, 588–597.
    • Sheather, S.J. and Jones, M.C. (1991). A reliable data-based bandwidth selection method for kernel density estimation. Journal of the Royal...
    • Tahmasebi, S. and Jafari, A.A. (2014). Estimators for the parameter mean of Morgenstern type bivariate generalized exponential distribution...
    • Wolfe, D.A. (2004). Ranked set sampling: An approach to more efficient data collection. Statistical Science, 19, 636–643.
    • Wolfe, D.A. (2010). Ranked set sampling. Wiley interdisciplinary reviews. Computational Statistics, 2, 460–466.
    • Yin, J., Hao, Y., Samawi, H. and Rochani, H. (2016). Rank-based kernel estimation of the area under the ROC curve. Statistical Methodology,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno