Ir al contenido

Documat


Adding real data to detect emotions by means of smart resource artifacts in MAS

  • RINCÓN, Jaime [1] ; POZA, Jose Luis [1] ; POSADAS, Juan Luis [1] ; JULIÁN, Vicente [1] Árbol académico ; CARRASCOSA, Carlos [1] Árbol académico
    1. [1] Valencia Polytechnic University
  • Localización: ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal, ISSN-e 2255-2863, Vol. 5, Nº. 4, 2016, págs. 85-92
  • Idioma: inglés
  • DOI: 10.14201/ADCAIJ2016548592
  • Enlaces
  • Resumen
    • This article proposes an application of a social emotional model, which allows to extract, analyse, represent and manage the social emotion of a group of entities. Specifically, the application is based on how music can influence in a positive or negative way over emotional states. The proposed approach employs the JaCalIVE framework, which facilitates the development of this kind of environments. A physical device called smart resource offers to agents processed sensor data as a service. So that, agents obtain real data from a smart resource. MAS uses the smart resource as an artifact by means of a specific communications protocol. The framework includes a design method and a physical simulator. In this way, the social emotional model allows the creation of simulations over JaCalIVE, in which the emotional states are used in the decision-making of the agents.

  • Referencias bibliográficas
    • Barella, A., Ricci, A., Boissier, O., and Carrascosa, C., 2012. MAM5: Multi-Agent Model For Intelligent Virtual Environments. In 10th European...
    • Canento, F., Fred, A., Silva, H., Gamboa, H., and Lourenço, A., 2011. Multimodal biosignal sensor data handling for emotion recognition. In...
    • Carter, C. S. and Porges, S. W., 2012. The biochemistry of love: an oxytocin hypothesis. EMBO reports, 14(1):12–16. ISSN 1469-221X. https://doi.org/10.1038/embor.2012.191
    • Colby, B. N., Ortony, A., Clore, G. L., and Collins, A., 1989. The Cognitive Structure of Emotions, volume 18. Cambridge University Press....
    • Coulson, M., 2004. Attributing emotion to static body postures: Recognition accuracy, confusions, and viewpoint dependence. Journal of nonverbal...
    • Haag, A., Goronzy, S., Schaich, P., and Williams, J., 2004. Emotion recognition using bio-sensors: First steps towards an automatic system....
    • Kim, J. and André, E., 2009. Fusion of multichannel biosignals towards automatic emotion recognition. In Multisensor Fusion and Integration...
    • Koelstra, S., Mühl, C., Soleymani, M., Lee, J. S., Yazdani, A., Ebrahimi, T., Pun, T., Nijholt, A., and Patras, I., 2012. DEAP: A database...
    • Liu, Y., Sourina, O., and Nguyen, M. K., 2011. Real-time EEG-based Emotion Recognition and its Applications. In Transactions on Computational...
    • Mehrabian, a., 1997. Analysis of affiliation-related traits in terms of the PAD Temperament Model. The Journal of psychology, 131(1):101–117....
    • Meijer, G. C. M., Meijer, C. M., and Meijer, C. M., 2008. Smart sensor systems. Wiley Online Library. https://doi.org/10.1002/9780470866931
    • Munera, E., Poza-Lujan, J.-L., Posadas-Yagüe, J.-L., Simó-Ten, J.-E., and Noguera, J. F. B., 2015. Dynamic Reconfiguration of a RGBD Sensor...
    • Richardson, L., Amundsen, M., and Ruby, S., 2013. RESTful Web APIs. " O'Reilly Media, Inc.".
    • Rincon, J., Garcia, E., Julian, V., and Carrascosa, C., 2014. Developing Adaptive Agents Situated in Intelligent Virtual Environments. In...
    • Rincon, J., Julian, V., and Carrascosa, C., 2015a. An Emotional-based Hybrid Application for Human-Agent Societies. In 10th Int. Conf. on...
    • Rincon, J., Julian, V., and Carrascosa, C., 2015b. Social Emotional Model. In 13th International Conference on Practical Applications of Agents...
    • Sun, Y., Sebe, N., Lew, M. S., and Gevers, T., 2004. Authentic emotion detection in real-time video. In Human Computer Interaction, European...
    • Whitman, B. and Smaragdis, P., 2002. Combining Musical and Cultural Features for Intelligent Style Detection. In Ismir, pages 5–10. Paris,...
    • Zhao, Q., 2013. A Molecular and Biophysical Model of the Biosignal. Quantum Matter, 2(1):9–16. ISSN 21647615. doi:10.1166/qm.2013.1017. https://doi.org/10.1166/qm.2013.1017

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno