Ir al contenido

Documat


Educational resources recommendation system for a heterogeneous student group

  • RODRÍGUEZ MARÍN, Paula Andrea [1] ; GIRALDO, Mauricio [1] ; TABARES, Valentina [1] ; DUQUE, Néstor [1] ; OVALLE, Demetrio [1]
    1. [1] Universidad Nacional de Colombia

      Universidad Nacional de Colombia

      Colombia

  • Localización: ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal, ISSN-e 2255-2863, Vol. 5, Nº. 3, 2016, págs. 21-30
  • Idioma: inglés
  • DOI: 10.14201/ADCAIJ2016532130
  • Enlaces
  • Resumen
    • In a face-class, where the student group is heterogeneous, it is necessary to select the most appropriate educational resources that support learning for all. In this sense, multi-agent system (MAS) can be used to simulate the features of the students in the group, including their learning style, in order to help the professor find the best resources for your class. In this paper, we present MAS to educational resources recommendation for group students, simulating their profiles and selecting resources that best fit. Obtained promising results show that proposed MAS is able to delivered educational resources for a student group.

  • Referencias bibliográficas
    • Ahmad, S., & Bokhari, M. (2012). A New Approach to Multi Agent Based Architecture for Secure and Effective E-learning. International Journal...
    • Alonso, C., Gallego, D., & Honey, P. (1997). Los Estilos de Aprendizaje. Procedimientos de diagnóstico y mejora. Bil-bao.
    • Boratto, L., & Carta, S. (2010). State-of-the-art in group recommendation and new approaches for automatic identifica-tion of groups....
    • Duque, N., Tabares, V., & Vicari, R. (2015). Mapeo de Metadatos de Objetos de Arendizaje con Estilos de Aprendizaje como Estrategia para...
    • Elahi, M., Ricci, F., & Massimo, D. (2014). Interactive Food Recommendation for Groups, 6–7.
    • Fleming, N., & Baume, D. (2006). Learning Styles Again: VARKing up the right tree! Educational Developments, (7). Re-trieved from http://www.johnsilverio.com/EDUI6702/Fleming_VARK_learningstyles.pdf
    • Kaššák, O., Kompan, M., & Bieliková, M. (2015). Personalized hybrid recommendation for group of users: Top-N mul-timedia recommender....
    • Li, J. Z. (2010). Quality, Evaluation and Recommendation for Learning Object. International Conference on Educational and Information Technology,...
    • Mizhquero, K., & Barrera, J. (2009). Análisis, Dise-o e Implementación de un Sistema Adaptivo de Recomendación de Información Basado en...
    • Othman, N., & Amiruddin, M. H. (2010). Different perspectives of learning styles from VARK model. Procedia - Social and Behavioral Sciences,...
    • Pe-a, C. I., Marzo, J., De la Rosa, J. L., & Fabregat, R. (2002). Un sistema de tutoría inteligente adaptativo considerando estilos de...
    • Rodriguez, P., Tabares, V., Duque, N., Ovalle, D., & Vicari, R. (2013). BROA: An agent-based model to recommend rel-evant Learning Objects...
    • Sikka, R., Dhankhar, A., & Rana, C. (2012). A Survey Paper on E-Learning Recommender System. International Journal of Computer Applications,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno