Ir al contenido

Documat


Un algoritmo cuasi-Newton para resolver la ecuación cuadrática matricial

  • Macías, Mauricio [1] ; Martínez, Héctor J. [2] ; Pérez, Rosana [1]
    1. [1] Universidad del Cauca

      Universidad del Cauca

      Colombia

    2. [2] Universidad del Valle
  • Localización: Integración: Temas de matemáticas, ISSN 0120-419X, Vol. 34, Nº. 2, 2016 (Ejemplar dedicado a: Revista Integración), págs. 187-206
  • Idioma: español
  • DOI: 10.18273/revint.v34n2-2016006
  • Títulos paralelos:
    • A quasi-Newton algorithm to solve the matrix quadratic equation
  • Enlaces
  • Resumen
    • español

      En este artículo proponemos un algoritmo cuasi-Newton para resolver una ecuación cuadráti a matricial, el cual reduce el costo computacional del método Newton-Schur, tradicionalmente usado para resolver dicha ecuación. Demostramos que el algoritmo propuesto es local y hasta cuadráticamente convergente. Presentamos pruebas numéricas que ratifican los resultados teóricos desarrollados.

    • English

      In this paper we propose a quasi-Newton algorithm to solve a matrix quadratic equation, which reduces the computational cost of Newton-Schur method, traditionally used to solve this equation. We show that the proposed algorithm is lo al and up to quadratically convergent. We present some numerical tests which conrfirm the theoretical results developed.

  • Referencias bibliográficas
    • Citas [1] Bai Z-Z., Guo X-X and Yin J-F., "On two iteration methods for the quadratic matrix equations", Inter. J. Numer. Anal....
    • [2] Berhanu M., "The polynomial eigenvalue problem", Thesis (Ph.D.), University of Manchester, 2005, 219 p.
    • [3] Bermúdez A., Durán R.G., Rodríguez R. and Solomin J., "Finite element analysis of a quadratic eingenvalue problem arising in dissipative...
    • [4] Butler G.J., Johnson C.R. and Wolkowicz H., "Nonnegative solutions of a quadratic matrix equation arising from comparison theorems...
    • [5] Clark J.V., Zhou N. and Pister K.S.J., "Modified nodal analysis for MEMS with multi-energy domains", International Conference...
    • [6] Dávila C.E., "A subspace approach to estimation of autoregressive parameters from noisy measurements", IEEE Trans. Signal Process....
    • [7] Davis G.J., "Numerical solution of a quadratic matrix equation", SIAM J. Sci. Statist. Comput. 2 (1981), No. 2, 164-175.
    • [8] Dennis J.E., Jr., and Schnabel R.B., Numerical methods for unconstrained optimization and nonlinear equations. Prentice Hall, Inc., Englewood...
    • [9] Dennis J.E., Jr., Traub J.F. and Weber R.P., "The algebraic theory of matriz polynomials", SIAM J. Numer. Anal. 13 (1976), No....
    • [10] Gao Y-H., "Newton's method for the quadratic matrix equation", Appl. Math. Comput. 182 (2006), No. 2, 1772-1779.
    • [11] Golub G.H. and Van Loan C.F., Matrix computations, Third ed. Jonhs Hopkins University Press, Baltimore, MD, 1996.
    • [12] Golub G.H., Nash S. and Van Loan C.F., "A Hessenberg-Schur method for the problem AX+XB=C", IEEE Trans. Automat. Control....
    • [13] Guo C-H., "On a quadratic matrix equation associated whit an M-matrix", IMA J. Numer. Anal. 23 (2003), No. 1, 11-27.
    • [14] Higham N.J., Functions of matrices. Theory and computations, SIAM, Philadelphia, PA, 2008.
    • [15] Higham N.J., "Stable iterations for the matrix square root", Numer. Algorithms 15 (1997), No. 2, 227-242.
    • [16] Higham N.J. and Kim H-M., "Numerical analysis of a quadratic matrix equation", IMA J. Numer. Anal. 20 (2000), No. 4, 499-519.
    • [17] Higham N.J. and Kim H-M., "Solving a quadratic matrix equation by Newton's method with exact line searches", SIAM J. Matrix...
    • [18] Horn R.A. and Johnson C.R., Topics in matrix analysis, Cambridge University Press, Cambridge, 1991.
    • [19] Kay S.M., "Noise compensation for autoregressive spectral estimates", IEEE Trans. Acoust. Speech Signal Process. ASSP-28 (1980),...
    • [20] Lancaster P., Lambda-matrices and vibrating systems, Pergamon Press, Oxford-New York-París, 1966.
    • [21] Laub A.J., "Efficient multivariable frequency response computations", 19th IEEE Conference on Decision and Control including...
    • [22] Liu L-D., "Perturbation analysis of a quadratic matrix equation associated with an M-matrix", J. Comput. Appl. Math. 260 (2014),...
    • [23] Liu L-D. and Lu X., "Two kinds of condition numbers for the quadratic matrix equation", Appl. Math. Comput. 219 (2013), No. 16,...
    • [24] Macías E.M., "Métodos secantes de cambio mínimo para el cálculo de ceros de funciones de matrices", Tesis de maestría, Universidad...
    • [25] Macías M., Martínez H.J. and Pérez R., "Sobre la convergencia de un método secante para ecuaciones matriciales no lineales",...
    • [26] Monsalve M. and Raydan M., "A secant method for nonlinear matrix problems", in Numerical linear algebra in signals, systems and...
    • [27] Monsalve M. and Raydan M., "Newton's method and secant methods: a longstanding relationship from vectors to matrices", Port....
    • [28] Reddy S.C., Schmid P.J. and Henningson D.S., "Pseudospectra of the Orr-Sommerfeld operator", SIAM J. App. Math. 53 (1993), No....
    • [29] Seo S-H., Seo J-H. and Kim H-M , "Newton's method for solving a quadratic matrix equation whith special coefficient matrices",...
    • [30] Smith H.A., Singh R.K. and Sorensen D.C., "Formulation and solution of the non-linear, damped eigenvalue problem for skeletal systems",...
    • [31] Tisseur F., "Backward error and condition of polynomial eigenvalue problems", Linear Algebra Appl. 309 (2000), No. 1-3, 339-361.
    • [32] Tisseur F. and Meerbergen K., "The quadratic eigenvalue problem", SIAM Rev. 43 (2001), No. 2, 235-286.
    • [33] Thomson W.T., Theory of vibration with applications, Fourth ed., CRC Press, 1996.
    • [34] Watkins D.S., Fundamentals of matrix computations. Second ed, Pure and Applied Mathe-matics, Wiley-Interscience, New York, 2002.
    • [35] Xu H.G. and Lu L.Z., "Properties of a quadratic matrix equation and the solution of the continuos-time algebraic Riccati equation",...
    • [36] Zhou N., Clark J.V. and Pister K.S.J., "Nodal simulation for MEMS design using SUGAR v0.5", International Conference on Modeling...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno