Ir al contenido

Documat


Números Tribonacci, S-unidades y triplas diofánticas

  • Gómez Ruiz, Carlos Alexis [1]
    1. [1] Universidad del Valle
  • Localización: Integración: Temas de matemáticas, ISSN 0120-419X, Vol. 33, Nº. 2, 2015 (Ejemplar dedicado a: REVISTA INTEGRACIÓN), págs. 121-133
  • Idioma: español
  • DOI: 10.18273/revint.v33n2-2015003
  • Títulos paralelos:
    • Tribonacci numbers, S-units and diophantine triples
  • Enlaces
  • Resumen
    • español

      La sucesión Tribonacci T := {Tn}n≥0 tiene valores iniciales T0 = T1 =0,T2 =1 y cada término posterior es la suma de los tres términos precedentes. En este artículo, estudiamos la ecuación Tn = kTm, donde k es una S-unidad, para un conjunto finito S de primos. Particularmente, mostramos que cualquier par de miembros de la tripla diofántica {9, 56, 103} asociada a T +1, no se puede extender a otra tripla diofántica asociada a T +1.

    • English

      The Tribonacci sequence T := {Tn}n≥0 has initial values T0 = T1 =0, T2 =1 and each term afterwards is the sum of the preceding three terms. In this paper, we study the equation Tn = kTm, where k is an S-unit, for a finite set S of primes. In particular, we show that any two members of the diophantine triple {9, 56, 103} associated to T +1, can not be extended to other diophantine triple associated to T +1.

  • Referencias bibliográficas
    • Citas [1] Arkin J., Hoggatt V.E. and Strauss E.G., “On Euler’s solution of a problem of Diophantus”, Fibonacci Quart. 17 (1979), No. 4,...
    • [2] Baker A. and Davenport H., “The equations 3x2 − 2 = y2 and 8x2 − 7 = z2”, Quart. J. Math. Oxford Ser. (2) 20 (1969), 129–137.
    • [3] Bugeaud Y. and Dujella A., “On a problem of Diophantus for higher powers”, Math. Proc. Cambridge Philos. Soc. 135 (2003), No. 1, 1–10.
    • [4] Bugeaud Y. and Gyarmati K., “On generalizations of a problem of Diophantus”, Illinois J. Math. 48 (2004), No. 4, 1105–1115.
    • [5] Bravo J.J. and Luca F., “Powers of two in generalized Fibonacci sequences”, Rev. Colombiana Mat. 46 (2012),
    • No. 1, 67–79.
    • [6] Cohen H., Number Theory, Vol. I: Tools and Diophantine equations, Springer, New York, 2007.
    • [7] Dresden G.P.B. and Du Z., “A simplified Binet formula for k-generalized Fibonacci numbers”, J. Integer Seq. 17 (2014), No. 4, Article...
    • [8] Dujella A., “There are only finitely many Diophantine quintuples”, J. Reine Angew. Math. 566 (2004), 183–214.
    • [9] Dujella A., “On the number of Diophantine m-tuples”, Ramanujan J. 15 (2008), No. 1, 37–46.
    • [10] Elsholtz C., Filipin A. and Fujita Y., “On Diophantine quintuples and D(−1)-quadruples”, Monatsh. Math. 175 (2014), No. 2, 227–239.
    • [11] Fuchs C., Luca F. and Szalay L., “Diophantine triples with values in binary recurrences”, Ann. Sc. Norm. Super. Pisa Cl. Sc. (5) 7 (2008),...
    • [12] Fuchs C., Luca F. and Szalay L., “Diophantine triples with values in k-generalized Fibonacci sequences” (preprint).
    • [13] Gibbs P., “Some rational Diophantine sextuples”, Glas. Mat. Ser. III 41 (2006), No. 2, 195–203.
    • [14] Gómez Ruiz C.A. and Luca F., “On the largest prime factor of the ratio of two generalized Fibonacci numbers”, J. Number Theory 152 (2015),...
    • [15] Gómez Ruiz C.A. and Luca F., “Tribonacci Diophantine quadruples”, Glas. Mat. Ser. III 50 (2015), No. 1, 17–24.
    • [16] Gómez Ruiz C.A. and Luca F., “Diophantine quadruples in the sequence of shifted Tribonacci numbers”, Publ. Math. Debrecen 86 (2015) No....
    • [17] Gyarmati K., Sárközy A. and Stewart C.L., “On shifted products which are powers”, Mathematika 49 (2002), No. 1-2, 227–230.
    • [18] Gyarmati K. and Stewart C.L., “On powers in shifted products”, Glas. Mat. Ser. III 42 (2007), No. 2, 273–279.
    • [19] Luca F., “On shifted products which are powers”, Glas. Mat. Ser. III 40 (2005), No. 1, 13–20.
    • [20] Luca F. and Szalay L., “Fibonacci Diophantine triples”, Glas. Mat. Ser. III 43 (2008), No. 2, 253–264.
    • [21] Luca F. and Szalay L., “Lucas Diophantine triples”, Integers 9 (2009), 441–457.
    • [22] Luca F. and Oyono R., “An exponential Diophantine equation related to powers of two consecutive Fibonacci numbers”, Proc. Japan Acad....
    • [23] Lucas E., “Théorie des fonctions numériques simplement périodiques”, Amer. J. Math. 1 (1878), No. 2-3, 184–240.
    • [24] Matveev E.M., “An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers II”, Izv. Math....
    • [25] Spickerman W.R., “Binet’s formula for the Tribonacci sequence”, Fibonacci Quart. 20 (1982), No. 2, 118–120.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno