Ir al contenido

Documat


Representación finita de variedades compactas

  • Parra, Carlos Mario [1] ; Suárez Ramírez, Johany [1]
    1. [1] Universidad Nacional de Colombia

      Universidad Nacional de Colombia

      Colombia

  • Localización: Integración: Temas de matemáticas, ISSN 0120-419X, Vol. 33, Nº. 2, 2015 (Ejemplar dedicado a: REVISTA INTEGRACIÓN), págs. 97-105
  • Idioma: español
  • DOI: 10.18273/revint.v33n2-2015001
  • Títulos paralelos:
    • Finite representation of compact manifolds
  • Enlaces
  • Resumen
    • español

      Un logro notable de la topología algorítmica es el resultado de A.A. Márkov sobre la insolubilidad del problema del homeomorfismo para variedades. Posteriormente, Boone, Haken y Poénaru extendieron la idea original de Márkov al caso de variedades suaves cerradas. Una primera dificultad era la introducción de una representación finita de una variedad diferenciable o combinatórica que la describiese de forma natural. En este trabajo extendemos dicha representación a variedades suaves compactas y proponemos una definición de variedad suave representable.

    • English

      A remarkable achievement of algorithmic topology is A.A.Markov’s theorem on the unsolvability of the homeomorphism problem for manifolds. Boone, Haken and Poénaru extended Markov’s original proof to the case of closed smooth manifolds. One of their initial difficulties was the introduction of a natural finite representation of a differentiable and/or combinatorial manifold. In this paper we extend this representation to compact smooth manifolds and propose an extension to smooth manifolds.

  • Referencias bibliográficas
    • Citas [1] Aschenbrenner M., Friedl S. and Wilton H., “Decision problems for 3-manifolds and their fundamental groups”, Department of Mathematics,...
    • [2] Bessières L., Besson G., Maillot S., Boileau M. and Porti J., Geometrisation of 3-manifolds, EMS Tracts in Mathematics, 13, European Mathematical...
    • [3] Boone W.W., Haken W. and Poénaru V., “On recursively unsolvable problems in topology and their classification”, in Contributions to Math....
    • [4] Bryant J.L., “Piecewise linear topology”, in Handbook of Geometric Topology (ed. Daverman R.J. and Sher R.B.), North-Holland (2002), 219–259.
    • [5] Cairns S.S., “Triangulation of the manifold of class one”, Bull. Amer. Math. Soc. 41 (1935), No. 8, 549–552.
    • [6] Cairns S.S., “A simple triangulation method for smooth manifolds”, Bull. Amer. Math. Soc. 67 (1961), No. 4, 389–390.
    • [7] Chernavsky A.V. and Leksine V.P., “Unrecognizability of manifolds”, Ann. Pure Appl. Logic. 141 (2006), No. 3, 325–335.
    • [8] Markov A.A., “Insolubility of the problem of homeomorphy” (Russian), in Proc. Internat. Congress Math. 1958 (ed. Todd J.A.), Cambridge...
    • [9] Milnor J.W., “On the relationship between differentiable manifolds and combinatorial manifolds” (unpublished notes), Princeton University...
    • Texas Christian University. http://faculty.tcu.edu/gfriedman/notes/milnor3.pdf
    • [citado 11 de agosto de 2015].
    • [10] Munkres J.R., Elementary Differential Topology, Princeton University Press, Princeton, NJ, 1966.
    • [11] Nabutovsky A., “Einstein structures: Existence versus uniqueness”, Geom. Funct. Anal. 5 (1995), No. 1, 76–91.
    • [12] Nabutovsky A. and Weinberger S., “Algorithmic unsolvability of the triviality problem for multidimensional knots”, Comment. Math. Helv....
    • [13] Nash J., “Real algebraic manifolds”, Ann. of Math. (2) 56 (1952), No. 3, 405–421.
    • [14] Soare R.I., “Computability theory and differential geometry”, Bull. Symbolic Logic. 10 (2004), No. 4, 457–486.
    • [15] Whitehead J.H.C., “On C1-Complexes”, Ann. of Math. (2) 41 (1940), No. 4, 809–824.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno