Ir al contenido

Documat


Sobre la resistencia bacteriana hacia antibióticos de acción bactericida y bacteriostática

  • Romero L., Jhoana P. [1] ; Ibargüen Mondragón, Eduardo [2]
    1. [1] Universidad de Antioquia

      Universidad de Antioquia

      Colombia

    2. [2] Universidad de Nariño

      Universidad de Nariño

      Colombia

  • Localización: Integración: Temas de matemáticas, ISSN 0120-419X, Vol. 32, Nº. 1, 2014 (Ejemplar dedicado a: Revista Integración), págs. 101-116
  • Idioma: español
  • Títulos paralelos:
    • On bacterial resistance to bactericidal and bacteriostatic antibiotics
  • Enlaces
  • Resumen
    • español

      En este artículo se formula un modelo matemático simple que describe la interacción entre bacterias sensibles y resistentes a múltiples antibióticos de acción bactericida y bacteriostática de forma simultánea, en el supuesto de que la adquisición de resistencia bacteriana se da a través de mutaciones espontáneas y adquiridas por la exposición a diferentes antibióticos. El análisis cualitativo revela la existencia de un equilibrio libre de bacterias, un equilibrio solo con bacterias resistentes y un equilibrio endémico donde coexisten ambas poblaciones de bacterias.

    • English

      In this work we formulate a simple mathematical model that describes the population dynamics of bacteria exposed simultaneously to multiple bactericidal and bacteriostatic antibiotics, assuming that resistance is acquired through mutations due to antibiotic exposure. Qualitative analysis reveals the existence of a free-bacteria equilibrium, resistant-bacteria equilibrium and an endemic equilibrium where both bacteria coexist. 

  • Referencias bibliográficas
    • Citas [1] Alavez J., Avenda R., Esteva L., Fuente J., Garcia G. and Gómez G., “Withinhost population dynamics of antibiotic-resistant M....
    • [2] Austin D. and Anderson R., “Studies of antibiotic resistance within the patient, hospitals and the community using simple mathematical...
    • [3] Bonhoeffer S., Lipsitch M. and Levin B.R., “Evaluating treatment protocols to prevent antibiotic resistance”, Proc. Natl. Acad. Sci. 94...
    • [4] Bonten M., Austin J., Daren J. and Lipsitch M., “Understanding the spread of antibiotic resistant pathogens in hospitals: mathematical...
    • [5] Bootsma M.C.J., Van Der Horrst M.A., Guryeva T., Ter Kuile B. and Diekmann O., “Modeling non-inherited antibiotic resistance”, Bull. Math....
    • [6] Carvalho R.V., Kleijn J., Meijer A.H. and Verbeek F.J., “Modeling innate immune response to early mycobacterium infection”, Comput. Math....
    • [7] Castillo-Chávez C. and Thieme T., “Asymptotically autonomous epidemic models, mathematical population dynamics: Analysis of Heterogeneity”,...
    • (1995), 33–50.
    • [8] Coll P., “Fármacos con actividad frente a mycobacterium tuberculosis”, Enferm. Infecc. Microbiol. Clin. 27 (2009), 474–480.
    • [9] D’Agata E., Magal P., Olivier D., Ruan S. and Webb G.F., “Modeling antibiotic resistance in hospitals: the impact of minimizing treatment...
    • [10] Dye Ch. and Espinal M.A., “Will tuberculosis become resistant to all antibiotics?”,Proc. R. Soc. Lond. B. 268 (2001), 45–52.
    • [11] Gelder L., Ponciano J.M., Abdo Z., Paul J., Larry J.F. and Eva M.T., “Combining mathematical models and statistical methods to understand...
    • experimental evolution”, Genet. 168 (2004), 1131–1144.
    • [12] Guilfoile P.G., Deadly Diseases and Epidemics: Antibiotic-Resistant Bacteria,Chelsea House Publishers, London, 2007.
    • [13] Gumbo T., Louie A., Deziel M.R., Parsons L.M., Salfinger M. and Drusano G.L.,“Selection of a moxifloxacin dose that suppresses drug resistance...
    • tuberculosis, by use of an in vitro pharmacodynamic infection model and mathematical modeling”, J. Infectious Diseases, 190 (2004), 1642–1651.
    • [14] Hellweger F., Ruan X. and Sánchez S., “A Simple Model of Tetracycline Antibiotic Resistance in the Aquatic Environment (with Application...
    • [15] Ibargüen-Mondragón E. and Esteva L., “On the interactions of sensitive and resistant Mycobacterium tuberculosis to antibiotics”, Math....
    • [16] Inggraham J., Wheelis M., Painte P. and Stanier R., Microbiología, New Jersey, Vol. II, Reverté, 1992.
    • [17] Linares J. and Martínez J., “Resistencia a los antimicrobianos y virulencia bacteriana”, Enferm. Infecc. Microbiol. Clin., 23 (2005),...
    • [18] Macheras P. and Iliadis A., Modeling in Biopharmaceutics, Pharmacokinetics, and Pharmacodynamics: Homogeneous and Heterogeneous Approaches,...
    • [19] Massad E., Nascimiento M. and Bezerr F., “An optimization model for antibiotic use”, Appl. Math. Comput. 201 (2008), 161–167.
    • [20] Ozcaglar C., Shabbeer A., Vandenberg S.L., Yener B., Bennett K.P., Zhang Y.,Dhandayuthapani S. and Deretic V., “Epidemiological models...
    • [21] Perko L., Differential Equations and Dynamical Systems, Springer-Verla, ed 3, New York, 2000.
    • [22] Romero J., Ibargüen E. and Esteva L., “Un modelo matemático sobre bacterias sensibles y resistentes a antibióticos”, Mat. Enseñ. Univ....
    • [23] Solórzano F. and Novales G., “Resistencia a bacterias respiratorias y entéricas a antibióticos”, Revista Salud Pública, 30 (1998), 481–483.
    • [24] Sun H.R., Lu X. and Ruan S., “Qualitative analysis of models with different treatment protocols to prevent antibiotic resistance”, Math....
    • [25] PLM-Colombia, Diccionario de Especialidades Farmacéuticas, PLM, ed 39, 2011. www.vademecum.com/co/.
    • [26] World Health Organization, The evolving threat of antimicrobial resistance. Opcions for action, WHO. 2012.
    • [27] Zhang Y., Dhandayuthapani Y. and Deretic S., “Molecular basis for the exquisite sensitivity of Mycobacterium tuberculosis to isoniazid”,...
    • (1996), 13212–13216.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno