Ir al contenido

Documat


El operador de Nemytskii en espacios de variación acotada generalizados

  • Castillo, René Erlín [1] ; Rafeiro, Humberto [2] ; Trousselot, Eduard [3]
    1. [1] Universidad Nacional de Colombia

      Universidad Nacional de Colombia

      Colombia

    2. [2] Pontífica Universidad Javeriana

      Pontífica Universidad Javeriana

      Colombia

    3. [3] Universidad de Oriente

      Universidad de Oriente

      Venezuela

  • Localización: Integración: Temas de matemáticas, ISSN 0120-419X, Vol. 32, Nº. 1, 2014 (Ejemplar dedicado a: Revista Integración), págs. 71-90
  • Idioma: español
  • Títulos paralelos:
    • Nemytskii operator on generalized bounded variation space
  • Enlaces
  • Resumen
    • español

      En este artículo demostramos que si el operador de Nemytskii lleva el espacio de variación (φ, α)-acotada en sí mismo, y satisface cierta condición de Lipschitz, entonces existen dos funciones g y h perteneciendo al espacio de variación (φ, α)-acotada tal que f (t, y) = g(t)y + h(t) para todo t ∈ [a, b], y ∈ R.

    • English

      In this paper we show that if the Nemytskii operator maps the (φ, α)-bounded variation space into itself and satisfies some Lipschitz condition, then there are two functions g and h belonging to the (φ, α)-bounded variation space such that f (t, y) = g(t)y + h(t) for all t ∈ [a, b], y ∈ R.

  • Referencias bibliográficas
    • Citas [1] Appell J. and Zabrejko P.P., Nonlinear superposition operators, Cambridge University Press, 1990.
    • [2] Castillo R.E., Rafeiro H. and Trousselot E., “On functions of (φ, α)-bounded variation”, (2013), submitted.
    • [3] Castillo R.E. and Trousselot E., “On Functions of (p, α)-Bounded Variation”, Real Anal. Exchange 34 (2008), no. 1, 49–60.
    • [4] Chakvabarty M.C., “Some result on AC-w-functions”, Fundamenta Mathematica LXIV (1969), 219–230.
    • [5] Chistyakov V.V., “Generalized variation of mappings and applications”, Real Anal. Exchange 25 (1999–2000), no. 1, 61–64.
    • [6] Chistyakov V.V., “On mappings o finite generalized variation and nonlinear operators”, Real Anal. Exchange 24th Summer Symp. Conf. Reports...
    • [7] Chistyakov V.V., “Lipschitzian superposition operators between spaces of functions of bounded generalized variation with weight”, J. Appl....
    • [8] Chistyakov V.V., “Generalized variation of mappings with applications to composition operators and multifunctions”, Positivity 5 (2001),...
    • [9] Chistyakov V.V., “Superposition operators in the algebra of functions of two variables with finite total variation”, Monatsh. Math. 137...
    • [10] Chistyakov V.V., “Metric semigroups and cones of mappings of inite variation of several variables and multivalued superposition operators”,...
    • Nauk 393 (2003), no. 6, 757–761. English translation: Dokl. Math. Sci. 68, 6/2 (2003).
    • [11] Cybertowicz Z. and Matuszewska W., “Functions of bounded generalized variations”, Commentat. Math. 20 (1977), 29–52.
    • [12] Halmos P., Measure Theory, Springer-Verlag, 1974.
    • [13] Hudjaev S.I. and Vol’pert A.I., Analysis in classes of discontinuous functions and equations of mathematical physics, Springer, 1985.
    • [14] Jeffery R.L., “Generalized integrals with respect to bounded variation”, Canadian Journal of Mathematics 10 (1958), 617–625.
    • [15] Jordan C., “Sur la série de Fourier”, C.R. Acad. Sci. Paris 2 (1881), 228–230.
    • [16] Merentes N. and Rivas S., “El operador de composición con algún tipo de variación acotada”. IX Escuela Venezolana de Matemática A:M:V-IVIC,...
    • [17] Krasnosel’skii M.A. and Rutickii Ya.B., Convex Functions and Orlicz Spaces, Groningen: P.Noordhoff Ltd, 1961.
    • [18] Maligranda L. and Orlicz W., “On some properties of Functions of Generalized Variation”, Monatshift für Mathematik 104 (1987), 53–65.
    • [19] Matkowski J., “Functional equations and Nemytskii operators”, Funkc. Ekvacioj Ser. Int. 25 (1982), 127–132.
    • [20] Matkowski J., “Form of Lipschitz operators of substitution in Banach spaces of differentiable functions”, Sci. Bull. Lodz Tech. Univ....
    • [21] Matkowski J., “On Nemytskii operator”, Math. Japon. 33 (1988), no. 1, 81–86.
    • [22] Matkowski J., “Lipschitzian composition operators in some function spaces”, Nonlinear Anal. 30 (1997), no. 2, 719–726.
    • [23] Matkowski J. and Merentes N., “Characterization of globally Lipschitzian composition operators in the Banach space BV 2 p [a, b]”, Archivum...
    • 186.
    • [24] Matkowski J. and Miś J., “On a characterization of Lipschitzian operators of substitution in the space BV a, b”, Math. Nachr. 117 (1984),...
    • [25] Merentes N. and Nikodem K., “On Nemytskii operator and set-valued functions of bounded p-variation”, Rad. Mat. 8 (1992), no. 1, 139–145.
    • [26] Merentes N. and Rivas S., “On characterization of the Lipschitzian composition operator between spaces of functions of bounded p-variation”,...
    • [27] Riesz F., “Untersuchungen über systeme integrierbarer funktionen”, Mathematische Annalen. 69 (1910), 449-497.
    • [28] Riesz F. and Nagy B., Functional Analysis (translated from the second french edition), Ungar, New York, 1955.
    • [29] Smajdor A. and Smajdor W., “Jensen equation and Nemytskii operator for set-valued functions”, Rad. Mat. 5 (1989), 311–320.
    • [30] Smajdor W., “Note on Jensen and Pexider functional equations”, Demonstratio Math. 32 (1999), no. 2, 363–376.
    • [31] Zawadzka G., “On Lipschitzian operators of substitution in the space of set-valued functions of bounded variation”, Rad. Mat. 6 (1990),...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno