Ir al contenido

Documat


Acerca de la enseñanza y el aprendizaje de la demostración en matemáticas

  • Fiallo, Jorge [1] Árbol académico ; Camargo, Leonor [3] Árbol académico ; Gutiérrez, Ángel [2] Árbol académico
    1. [1] Universidad Industrial de Santander

      Universidad Industrial de Santander

      Colombia

    2. [2] Universitat de València

      Universitat de València

      Valencia, España

    3. [3] Universidad Pedagógica Nacional
  • Localización: Integración: Temas de matemáticas, ISSN 0120-419X, Vol. 31, Nº. 2, 2013 (Ejemplar dedicado a: Revista Integración), págs. 181-205
  • Idioma: español
  • Títulos paralelos:
    • About teaching and learning of the proof in mathematics
  • Enlaces
  • Resumen
    • español

      En el presente documento realizamos una recopilación bibliográfica de las principales investigaciones acerca de la enseñanza y el aprendizaje de la demostración, con el ánimo de aportar fuentes de consulta a la comunidad de educadores en matemáticas interesados en el tema. Planteamos una estructura organizativa que incluye las siguientes líneas de investigación: Consideraciones histórico-epistemológicas, La demostración en el currículo, Concepciones y dificultades de los estudiantes al demostrar, Relaciones entre argumentación y demostración y Propuestas didácticas para la enseñanza de la demostración.

    • English

      In this paper we present a synthesis of main research publications on the teaching and learning of proof. Our aim is to provide a reference to the mathematics educators interested in this topic. The paper is organized based on the following research topics: Historic-epistemological issues, Proof in curriculum, Students’ conceptions and difficulties, Relationship among argumentation and proof, Teaching units to teach proof.

  • Referencias bibliográficas
    • Citas [1] Alibert D., Thomas M., “Research on mathematical proof”. En D. Tall (Ed.), Advanced
    • mathematical thinking (pp. 215–229). Dordrecht, Los Países Bajos, Kluwer, 1991.
    • [2] Antonini S., Mariotti M.A., “Indirect proof: An interpreting model”, Proceedings of the 5th
    • Conference of the European Society for Research in Mathematics Education (CERME5),
    • (2007), 541–550.
    • [3] Antonini S., Mariotti M.A., “Indirect proof: what is specific to this way of proving?” ZDM
    • the International Journal on Mathematics Education 40 (2008), 401–412.
    • [4] Arsac G., “L’origine de la démonstration: Essai d’épistémologie didactique”, Recherches
    • en Didactique des Mathématiques 8 (1987), no. 3, 267–312.
    • [5] Arsac G., “Origin of mathematical proof”. En P. Boero (Ed.), Theorems in school: From
    • history, epistemology and cognition to classroom practice (pp. 27–42). Rotterdam, Los
    • Países Bajos, Sense Publishers, 2007.
    • [6] Arzarello F. “The proof in the 20th century: From Hilbert to automatic theorem proving”.
    • En P. Boero (Ed.), Theorems in school: From history, epistemology and cognition to
    • classroom practice (pp. 43–64). Rotterdam, Los Países Bajos, Sense Publishers, 2007.
    • [7] Arzarello F., Micheletti C., Olivero F., Robutti O., “A model for analiysing the transition
    • to formal proofs in geometry”, Proceedings of the 22th PME International Conference 2
    • (1998), 24–31.
    • [8] Arzarello F., Olivero F., Paola D., Robutti O., “A cognitive analysis of dragging practises
    • in Cabri enviroments”, Zentralblatt fur Didaktik der Mathematik 34 (2002), no. 3, 66–72.
    • [9] Arzarello F., Olivero F., Paola D., Robutti O., “The transition to formal proof in geometry”.
    • En P. Boero (Ed.), Theorems in school: From history, epistemology and cognition to
    • classroom practice (pp. 305–323). Rotterdam, Los Países Bajos, Sense Publishers, 2007.
    • [10] Arzarello F., Sabena C., “Semiotic and theoretic control in argumentation and proof activities”,
    • Educational Studies in Mathematics 77 (2011), no. 2-3, 189–206.
    • [11] Back R.J., Wright J.V., “A method for teaching rigorous mathematical reasoning”, Proceedings
    • of ICTM14, (1999), 9–13.
    • [12] Balacheff N., Une étude des processus de preuve en mathématique chez des élèves de
    • collège, Tesis doctoral, Grenoble, Francia, 1988. [Traducción al español: Balacheff N.,
    • Procesos de prueba en los alumnos de matemáticas, Bogotá, Colombia: una empresa
    • docente, 2000.].
    • [13] Balacheff N., “Aspects of proof in pupils’ practice of school mathematics”. En D. Pimm
    • (Ed.), Mathematics, teachers and children (pp. 216–235), Londres, Hodder & Stoughton,
    • [14] Balacheff N., “Conception, connaissance et concept”. En D. Grenier (Ed.), Didactique et
    • technologies cognitives en mathématiques, (pp. 219–244), Grenoble (Francia), Université
    • Joseph Fourier, séminaires 1994-1995.
    • [15] Balacheff N. “The role of the researcher’s epistemology in mathematics education: an
    • essay on the case of proof”, ZDM the International Journal on Mathematics Education 40
    • (2008), 501–512.
    • [16] Balacheff N., Margolinas C., “cKc/ modèle de connaissances pour le calcul de situations
    • didactiques”. En A. Mercier, C. Margolinas (Eds.), Balises pour la didactique des mathé-
    • matiques (pp. 75–106), Francia, La Pensée Sauvage, 2005.
    • [17] Bartolini Bussi M., “Experimental mathematics and the teaching and learning of proof”,
    • Proceedings of the 6th Conference of the European Society for Research in Mathematics
    • Education (CERME6), (2010), 221–230.
    • [18] Bartolini Bussi, M., Boero P., Ferri F., Garuti R., Mariotti M.A., “Approaching and
    • developing the culture of geometry theorems in school: A theoretical framework”. En P.
    • Boero (Ed.), Theorems in school: From history, epistemology and cognition to classroom
    • practice (pp. 211–217), Rotterdam, Los Países Bajos, Sense Publishers, 2007.
    • [19] Bartolini Bussi M., Boni N., Ferri F., “Construction problems in primary school: A case
    • from the geometry of circle”. En P. Boero (Ed.), Theorems in school: From history, epistemology
    • and cognition to classroom practice (pp. 219–247), Rotterdam, Los Países Bajos,
    • Sense Publishers, 2007.
    • [20] Battista M.T., Clements D.H., “Geometry and proof”, The Mathematics Teacher 88
    • (1995), no. 1, 48–54.
    • [21] Bell A.W., “A study of pupil’s proof-explanation in mathematical situation”, Educational
    • Studies in Mathematics 7 (1976), no. 1, 23–40.
    • [22] Blanton M.L., Stylianou, D.A., “Exploring sociocultural aspects of undergraduate students’
    • transition to mathematical proof”, Proceedings of the 24th Annual Meeting of the
    • North American Chapter of the PME International Group 4 (2002), 1673–1680.
    • [23] Boero P., Consogno V., Guala E., Gazzolo T., “Research for innovation : A teaching
    • sequence on the argumentative approach to probabilistic thinking in Grades I-V and
    • some related basic research results”, Recherches en Didactique des Mathématiques 29(I)
    • (2009), 59–96.
    • [24] Boero P., Theorems in school: From history, epistemology and cognition to classroom
    • practice, Rotterdam, Los Países Bajos, Sense Publishers, 2007.
    • [25] Boero P., Garuti R., Lemut E., “Approaching theorems in grade VIII: Some mental processes
    • underlying producing and proving conjectures, and conditions suitable to enhance
    • them”. En P. Boero (Ed.), Theorems in school: From history, epistemology and cognition
    • to classroom practice (pp. 249–264), Rotterdam, Los Países Bajos, Sense Publishers, 2007.
    • [26] Boero P., Garuti R., Lemut E., Mariotti A., “Challenging the traditional school approach
    • to theorems: A hypothesis about the cognitive unity of theorems”, Proceedings of the 20th
    • PME International Conference 2 (1996), 113–120.
    • [27] Camargo L., Descripción y análisis de un caso de enseñanza y aprendizaje de la demostración
    • en una comunidad de práctica de futuros profesores de matemáticas de educación
    • secundaria, Tesis doctoral, Universidad de Valencia, Valencia, España, 2010.
    • [28] Castagnola E., Tortora R., “Some remarks on the theorem about the infinity of prime
    • numbers”, Proceeding of the 5th Conference of the European Society for Research in
    • Mathematics Education (CERME5), (2007), 581–590.
    • [29] Clark P., The emergence of a classroom community of practice in a mathematical structures
    • course, Tesis doctoral, Department of Philosophy, Arizona State University, 2005.
    • [30] Cobb P., Yackel E., Woods T., “A constructivist alternative to the representational view
    • of mind in mathematics education”, Journal for Research in Mathematics Education 23
    • (1992), 2–33.
    • [31] De Villiers M., “El papel y la función de la demostración en matemáticas”, Epsilon 26
    • (1993), 15–29.
    • [32] Douek N., “Some remarks about argumentation and mathematical proof and their educational
    • implications”, Proceeding of the 1st Conference of the European Society for Research
    • in Mathematics Education (CERME1), (1998), 125–139.
    • [33] Douek N., “Some remarks about argumentation and proof”, En P. Boero (Ed.), Theorems
    • in school: From history, epistemology and cognition to classroom practice (pp. 163–181),
    • Rotterdam, Los Países Bajos, Sense Publishers, 2007.
    • [34] Duval R., “Langage et représentation dans l’apprentissage d’une démarche déductive”,
    • Proceedings of the 13th PME International Conference 1 (1989), 228–235.
    • [35] Duval R., “Argumenter, demontrer, expliquer: continuité ou rupture cognitive?” Petit x
    • (1992-1993), 37–61.
    • [36] Duval R., “Cognitive functioning and the understanding of mathematical processes of
    • proof”, En P. Boero (Ed.), Theorems in school: From history, epistemology and cognition
    • to classroom practice (pp. 137–161), Rotterdam, Los Países Bajos, Sense Publishers, 2007.
    • [37] Fiallo J., Enseñanza de las razones trigonométricas en un ambiente cabri para el desarrollo
    • de las habilidades de la demostración, Memoria de investigación, Universidad de Valencia,
    • Valencia, España, 2006.
    • [38] Fiallo J., Estudio del proceso de demostración en el aprendizaje de las razones
    • trigonométricas en un ambiente de geometría dinámica, Tesis doctoral, Universidad de
    • Valencia, Valencia, España, 2010.
    • [39] Fiallo J., Gutiérrez Á. “Tipos de demostración de estudiantes del grado 10o
    • en Santander
    • (Colombia)”. En M. Camacho, P. Flores, P. Bolea (Eds.), Investigación en Educación
    • Matemática XI (2007), 355–368.
    • [40] Fischbein E., Intuition in science and mathematics, Dordrecht, Los Países Bajos, D. Reidel,
    • [41] Furinghetti F., Morselli F., “Every unsuccessful problem solver is unsuccessful in his or her
    • own way: affective and cognitive factors in proving”, Educational Studies in Mathematics
    • (2008), 71–90.42] Garuti R., Boero P., Lemut E., “Cognitive unity of theorems and difficulty of proof”,
    • Proceedings of the 22th PME International Conference 2 (1998), 345–352.
    • [43] Godino J., Recio A., “Significados institucionales de la demostración. Implicaciones para
    • la educación matemática”, Enseñanza de las Ciencias 19 (2001), no. 3, 405–414.
    • [44] Grabiner J.V., “Why proof? A historian’s perspective”. En Hanna, G., de Villiers, M.
    • (Eds.), Proof and proving in mathematics education. The 19th ICMI Study (pp. 147–167),
    • Dordrecht, Los Países Bajos, Springer, 2012.
    • [45] Groman M., “Integrating Geometer’s Sketchpad into geometry course for secondary education
    • mathematics major”, Proceedings of ASCUE (1996), 9–13.
    • [46] Gutiérrez Á., Fiallo J., “Analysis of conjectures and proofs produced when learning
    • trigonometry”, Proceeding of the 5th Conference of European Society for Research in
    • Mathematics Education (2007), 622–632.
    • [47] Hanna G., “Some pedagogical aspects of proof”, Interchange 21 (1990), no. 1, 6–13.
    • [48] Hanna G., “The ongoing value of proof”. En P. Boero (Ed.), Theorems in school: From history,
    • epistemology and cognition to classroom practice (pp. 3–18), Rotterdam, Los Países
    • Bajos, Sense Publishers, 2007.
    • [49] Hanna G., de Villiers M. (Eds.), “Proof and proving in mathematics education”. The 19th
    • ICMI Study, Dordrecht, Los Países Bajos, Springer, 2012.
    • [50] Hanna G., Jahnke N., “Proof and proving”. En A. Bishop y otros (Eds.), International
    • handbook of mathematics education (pp. 877–908), Dordrecht, Los Países Bajos, Kluwer,
    • [51] Harel G., “Two dual assertions: The first on learning and the second on teaching (or vice
    • versa)”, The American Mathematical Monthly 105 (1998), 497–507.
    • [52] Harel G., “The development of mathematical induction as a proof scheme: a model for
    • DNR-based instruction”, En S. Campbell, R. Zaskis (Eds.), Learning and teaching number
    • theory, journal of mathematical behavior (pp. 185–212), New Jersey, EE.UU., Ablex, 2001.
    • [53] Harel G., “Students’ proof schemes revisited”, En P. Boero (Ed.), Theorems in school:
    • From history, epistemology and cognition to classroom practice (pp. 65–78), Rotterdam,
    • Los Países Bajos, Sense Publishers, 2007.
    • [54] Harel G., Martin W.G., “Proof frames of preservice elementary teachers”, Journal for
    • Research in Mathematics Education 20 (1989), no. 1, 41–51.
    • [55] Harel G., Sowder L., “Student’s proof schemes: results from exploratory studies”. En A.
    • Schoenfeld y otros (Ed.), Research in collegiate mathematics education III (pp. 234–283),
    • Providence, EE.UU., American Mahematical Society, 1998.
    • [56] Harel G., Sowder L., “Toward comprehensive perspectives on the learning and teaching
    • of proof”. En F. Lester (Ed.), Second handbook of research on mathematics teaching
    • and learning (pp. 805–842), Reston, VA, EE.UU., National Council of Teachers of
    • Mathematics, 2007.
    • [57] Healy L., Hoyles C., “Student’s performance in proving: competence or curriculum?” Proceedings
    • of the 1st Conference of the European Society for Research in Mathematics Education
    • (CERME1), (1998), 153–167.
    • [58] Healy L., Hoyles C., “A study of proof conceptions in algebra”, Journal for Research in
    • Mathematics Education 31 (2000), no. 4, 396–428.
    • [59] Healy L., Hoyles C., “Software tools for geometrical problem solving: potentials and pitfalls”,
    • International Journal of Computers for Mathematical Learning 6 (2001), 235–256.
    • [60] Hemmi K., Approaching proof in a community of mathematical practice, Tesis doctoral,
    • Department of Mathematics, Stockholm University, 2006.
    • [61] Herbst P.G., “Acerca de la demostración y la lógica de la práctica en la enseñanza
    • de la geometría: Observaciones sobre la forma de prueba a dos columnas”,
    • Proof Newsletter, (1999), Enero-Febrero. Revista electrónica accesible en
    • http://www.lettredelapreuve.it/OldPreuve/Newsletter/990102.html.
    • [62] Hollebrands K., Conner A., Smith R., “The nature of arguments provided by college geometry
    • students whith access to technology while solving problems”, Journal for Research
    • in Mathematics Education 41 (2010), no. 4, 324–350.
    • [63] Hoyles C., “The curricular shaping of students’ approaches”, For the Learning of
    • Mathematics 17 (1997), no. 1, 7–16.
    • [64] Hoyles C., Küchemann D., “Student’s understandings of logical implication”, Educational
    • Studies in Mathematics 51 (2002), 193–223.
    • [65] Ibañes M., Ortega T., “Reconocimiento de procesos matemáticos en alumnos de primer
    • curso de bachillerato”, Enseñanza de las Ciencias 21 (2003), no. 1, 49–63.
    • [66] Ibañes M., Ortega T., “Un análisis del tratamiento de la demostración matemática en los
    • libros de texto de bachillerato”, Números 57 (2004), 19–32.
    • [67] Jones K., “Providing a foundation for deductive reasoning: students’ interpretation when
    • using dynamic geometry software and their evolving mathematical explanations”, Educational
    • Studies in Mathematics 44 (2000), 55–85.
    • [68] Knipping C., “A method for revealing structures of argumentations in classroom proving
    • processes”, ZDM The International Journal on Mathematics Education 40 (2008), 427–
    • [69] Knuth E.J., “Teachers’ conceptions of proof in the context of secondary school
    • mathematics”, Journal of Mathematics Teacher Education 5 (2002), 61–88.
    • [70] Küchemann D., Hoyles C., “Investigating factors that influence students’ mathematical
    • reasoning”, Proceedings of the 25th PME International Conference 3 (2001), 257–264.
    • [71] Laborde C., “Dynamic geometry environments as a source of rich learning contexts for
    • the complex activity of proving”, Educational Studies in Mathematics 44 (2000), 151–161.
    • [72] Laborde C., Kynigos C., Hollebrands K., Sträesser R., “Teaching and learning geometry
    • with technology”. En Á. Gutiérrez, P. Boero (Eds.), Handbook of research on the psychology
    • of mathematics education. Past, present and future (pp. 275–304), Rotterdam, Los Países
    • Bajos, Sense Publishers, 2006.
    • [73] Lampert M., “When the problem is not the question and the solution is not the answer:
    • mathematical knowing and teaching”, American Educational Research Journal, 27 (1990),
    • no. 1, 29–63.
    • [74] Mariotti M.A., “Justifying and proving: figural and conceptual aspects”. En M. Hejny,
    • J. Novotna (Eds.), Proceedings of the European Research Conference on Mathematical
    • Education, 1997.
    • [75] Mariotti M.A., “Introduction to proof: the mediation of a dynamic software environment”,
    • Educational Studies in Mathematics 44 (2000), 25–53.
    • [76] Mariotti M.A., “Proof and Proving in Mathematics Education”. En Á. Gutiérrez, P. Boero
    • (Eds.), Handbook of research on the psychology of mathematics education. Past, present
    • and future (pp. 173–204), Rotterdam, Los Países Bajos, Sense Publishers, 2006.
    • [77] Mariotti M. A., Bartolini M., Boero P., Ferri F., Garuti R., “Approaching geometry theorems
    • in contexts: from history and epistemology to cognition”, Proceedings of the 21th
    • PME International Conference 1 (1997), 180–195.
    • [78] Marrades R., Gutiérrez A., “Proofs produced by secondary school students learning geometry
    • in a dynamic computer environment”, Educational Studies in Mathematics 44 (2000),
    • 125.
    • [79] Martin T.S., Soucy McCrone S.M., Wallace M.L., Dindyal J., “The interplay of teacher
    • and student actions in the teaching and learning of geometric proof”, Educational Studies
    • in Mathematics 60 (2005), 95–124.
    • [80] Nardi E., Amongst mathematicians. Teaching and learning mathematics at university level,
    • New York, USA, Springer, 2008.
    • [81] NCTM, Curriculum and evaluation standards for school mathematics, Reston, VA,
    • EE.UU., 1989.
    • [82] NCTM, Principles and standards for school mathematics, Reston, VA, EE.UU., 2000.
    • [83] NCTM, Principios y estándares para la educación matemática, Sociedad Andaluza de
    • Educación Matemática Thales, Sevilla, España, 2003.
    • [84] Otte M., “Proof and explanation from a semiotical point of view”, Relime, número especial
    • (2006), 23–43.
    • [85] Parenti L., Barberis M., Pastorino M., Viglienzone P., “From dynamic exploration to
    • “theory” and “theorems” (from 6th to 8th grades)”. En P. Boero (Ed.), Theorems in school:
    • From history, epistemology and cognition to classroom practice (pp. 265–284), Rotterdam,
    • Los Países Bajos, Sense Publishers, (2007).
    • [86] Pedemonte B., Etude didactique et cognitive des rapports de l’argumentation et de la
    • démonstration dans le apprentisage des mathématiques, Tesis doctoral, Université Joseph
    • Fourier-Grenoble I, Grenoble, Francia, 2002.
    • [87] Pedemonte B., “Quelques outils pour l‘analyse cognitive du rapport entre argumentation
    • et démonstration”, Recherches en Didactique des Mathématiques 25 (2005), no. 3, 313–348.
    • [88] Pedemonte B., “How can the relationship between argumentation and proof be analysed?”,
    • Educational Studies in Mathematics 66 (2007), 23–41.
    • [89] Pedemonte B., “Argumentation and algebraic proof”, ZDM the International Journal on
    • Mathematics Education 40 (2008), 385–400.
    • [90] Perks P., Prestage S., “Why don’t they prove?” Mathematics in School 24 (1985), no. 3,
    • 45.
    • [91] Radford L., “La enseñanza de la demostración: aspectos teóricos y prácticos”, Educación
    • Matemática 6 (1994), no. 3, 21–36.
    • [92] Reid D.A., Knipping C., Proof in mathematics education, Rotterdam, Los Países Bajos,
    • Sense Publishers, 2010.
    • [93] Sackur C., Drouhard J.P., Maurel M., “Experiencing the necessity of a mathematical
    • statement”, Proceedings of the 24th PME International Conference 4 (2000), 105–112.
    • [94] Sinclair N., Jones K., “Geometrical reasoning in the primary school, the case of parallel
    • lines”, Proceedings of the British Society for Research into Learning Mathematics 29
    • (2009), no. 2, 88–93.
    • [95] Stacey K., Vincent J., “Modes of reasoning in explanations in year 8 textbooks”, Proceedings
    • of the 31st Annual Conference of the Mathematics Education Research Group of
    • Australasia, (2008), 475–481.
    • [96] Stylianides A.J., “Toward a comprehensive knowledge package for teaching proof: A focus
    • on the misconception that empirical arguments are proofs”, Pythagoras 32 (2011), no. 1,
    • p.
    • [97] Stylianides A.J., Stylianides G.J., “Proof constructions and evaluations”, Educational Studies
    • in Mathematics 72 (2009), no. 2, 237–253.
    • [98] Stylianides G.J., Stylianides A.J., “Facilitating the transition from empirical arguments
    • to proof”, Journal for Research in Mathematics Education 40 (2009), no. 3, 314–352.
    • [99] Szendrei-Radnai J., Török J., “The tradition and role of proof in mathematics education in
    • Hungary”. En P. Boero (Ed.), Theorems in school: From history, epistemology and cognition
    • to classroom practice (pp. 117–134). Rotterdam, Los Países Bajos, Sense Publishers,
    • [100] Tall D., “The cognitive development of proof: is mathematical proof for all or for some”,
    • Paper presented at the UCSMP Conference, Chicago University, Chicago, EE.UU., 1998.
    • [101] Toulmin S.E., The use of argument, Cambridge, Gran Bretaña, Cambridge University
    • Press, 1958.
    • [102] Tsamir P., Tirosh D., Dreyfus T., Barkai R., Tabach M., “Should proof be minimal?
    • Ms. T’s evaluation of secondary school students’ proofs”, The Journal of Mathematical
    • Behavior 28 (2009), 58–67.
    • [103] Weber K., Maher C., Powell A., “Learning opportunities from group discussions: warrants
    • become the objects of debate”, Educational Studies in Mathematics 68 (2008), 247–261.
    • [104] Weiss M., Herbst P., Chen C., “Teachers’ perspectives on “authentic mathematics” and
    • the two-column proof form”, Educational Studies in Mathematics 70 (2009), 275–293.
    • [105] Yackel E., “Explanation justification and argumentation in mathematics classrooms”, Proceedings
    • of the 25th PME International Conference 1 (2001), 9–24.
    • [106] Yackel E., Cobb P., “Sociomathematical norms, argumentation, and autonomy in
    • mathematics”, Journal for Research in Mathematics Education 27 (1996), no. 4, 458–477.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno