Ir al contenido

Documat


Una extensión del precondicionador I + Smax para el método de Gauss-Seidel

  • Arenas, Isnardo [1] ; Castillo, Paul [1] ; Yong, Xuerong [1]
    1. [1] University of Puerto Rico
  • Localización: Integración: Temas de matemáticas, ISSN 0120-419X, Vol. 31, Nº. 1, 2013 (Ejemplar dedicado a: Revista Integración), págs. 1-14
  • Idioma: español
  • Títulos paralelos:
    • An extension of the I + Smax preconditioner for the Gauss-Seidel method
  • Enlaces
  • Resumen
    • español

      Se propone una técnica de precondicionamiento para el método deGauss-Seidel basada en la aplicación de una cantidad de pasos arbitrarios perofijos del precondicionador I + Smax. Se analiza de manera teórica la reducción del radio espectral de la matriz de iteración del método de Gauss-Seidel para Z-matrices diagonalmente dominantes. En particular, se demuestra que después de un número finito de pasos esta matriz se reduce a una matriz nula. Para ilustrar la eficacia de la técnica propuesta se presentan experimentos numéricos para una amplia variedad de matrices. Se estudian numéricamente versiones puntuales y de bloques del precondicionador.

    • English

      A preconditioning technique based on the application of a fixedbut arbitrary number of I + Smax steps is proposed. A reduction of the spectral radius of the Gauss-Seidel iteration matrix is theoretically analyzed fordiagonally dominant Z-matrices. In particular, it is shown that after a finitenumber of steps this matrix reduces to null matrix. To illustrate the performance of the proposed technique numerical experiments on a wide variety ofmatrices are presented. Point and block versions of the preconditioner are numerically studied.

  • Referencias bibliográficas
    • Citas [1] Axelsson O., Iterative Solution Methods, Cambridge University Press, New York, 1994.
    • [2] Berman A. and Plemmons R.J., Nonnegative Matrices in the Mathematical Sciences, Classics
    • in Applied Mathematics, 9, SIAM, 1994.
    • [3] Castillo P. and Sequeira F.A., “Computational aspects of the Local Discontinuous Galerkin
    • method on unstructured grids in three dimensions”, Mathematical and Computer Modelling
    • (2013), 2279–2288.
    • [4] Du J., Zheng B. and Wang L., “New iterative methods for solving linear systems”, J. Appl.
    • Anal. Comput. 1 (2011), no. 3, 351–360.
    • [5] Durlofsky L.J., “Accuracy of mixed and control volume finite element approximations to
    • Darcy velocity and related quantities”, Water Resources Research 30 (1994), no.4, 965–973.
    • [6] Gunawardena A.D., Jain S.K. and Snyder L., “Modified iterative methods for consistent
    • linear systems”, Linear Algebra Appl. 154-156 (1991), 123–143.
    • [7] Hadjidimos A., Noutsos D. and Tzoumas M., “More on modifications and improvements of
    • classical iterative schemes for M-matrices”, Linear Algebra Appl. 364 (2003), 253–279.
    • [8] Kohno T., Kotakemori H., Niki H. and Usui M., “Improving the modified Gauss-Seidel
    • method for Z-matrices”, Linear Algebra Appl. 267 (1997), 113–123.
    • [9] Kotakemori H., Harada K., Morimoto M. and Niki H., “A comparison theorem for the
    • iterative method with preconditioner (I + Smax)”, J. Comput. Appl. Math. 145 (2002), no.
    • 373–378.
    • [10] Kotakemori H., Niki H. and Okamoto N., “Accelerated iterative method for Z-matrices”, J.
    • Comput. Appl. Math. 75 (1996), no. 1, 87–97.
    • [11] Liu Q., Chen G. and Cai J., “Convergence analysis of the preconditioned Gauss-Seidel
    • method for H-matrices”, Comput. Math. Appl. 56 (2008), no. 8, 2048–2053.
    • [12] Milaszewicz J.P., “Improving Jacobi and Gauss-Seidel iterations”, Linear Algebra Appl. 93
    • (1987), 161–170.
    • [13] Mokari-Bolhassan M.E. and Trick T.N., “A new iterative algorithm for the solutions of large
    • scale systems”, 28th Midwest Symposium on Circuits and Systems Louisville, Kentucky,
    • [14] Morimoto M., Harada K., Sakakihara M. and Sawami H., “The Gauss-Seidel iterative
    • method with the preconditioning matrix (I + S + SM)”, Japan J. Appl. Math. 21 (2004),
    • 34.
    • [15] Niki H., Harada K., Morimoto M. and Sakakihara M., “The survey of preconditioners used
    • for accelerating the rate of convergence in the Gauss-Seidel method”, J. Comput. Applied.
    • Math. 164-165 (2004), 587–600.
    • [16] Shao J.L., Huang T.Z. and Zhang G.F., “Linear system based approach for solving some
    • related problems of M-matrices”, Linear Algebra Appl. 432 (2010), 327–337.
    • [17] Shen H., Shao X., Huang Z. and Li C., “Preconditioned Gauss-Seidel iterative method for
    • Z matrices linear systems”, Bull. Korean. Math. Soc. 48 (2011), 303–314.
    • [18] Varga R.S., Matrix Iterative Analysis, Springer Series in Computational Mathematics,
    • Springer, Berlin, 2000.
    • [19] Zheng B. and Miao S.X., “Two new modified Gauss-Seidel methods for linear systems with
    • M-matrices”, J. Comput. Appl. Math. 233 (2009), 922–930.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno