Ir al contenido

Documat


Bargaining agents based system for automatic classification of potential allergens in recipes

  • ALEMANY, José [1] ; HERAS, Stella [1] Árbol académico ; PALANCA, Javier [1] ; JULIÁN, Vicente [1] Árbol académico
    1. [1] Universidad Politécnica de Valencia

      Universidad Politécnica de Valencia

      Valencia, España

  • Localización: ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal, ISSN-e 2255-2863, Vol. 5, Nº. 2, 2016, págs. 43-51
  • Idioma: inglés
  • DOI: 10.14201/ADCAIJ2016524351
  • Enlaces
  • Resumen
    • The automatic recipe recommendation which take into account the dietary restrictions of users (such as allergies or intolerances) is a complex and open problem. Some of the limitations of the problem is the lack of food databases correctly labeled with its potential allergens and non-unification of this information by companies in the food sector. In the absence of an appropriate solution, people affected by food restrictions cannot use recommender systems, because this recommend them inappropriate recipes. In order to resolve this situation, in this article we propose a solution based on a collaborative multi-agent system, using negotiation and machine learning techniques, is able to detect and label potential allergens in recipes. The proposed system is being employed in receteame.com, a recipe recommendation system which includes persuasive technologies, which are interactive technologies aimed at changing users’ attitudes or behaviors through persuasion and social influence, and social information to improve the recommendations.

  • Referencias bibliográficas
    • Adomavicius, G. and Tuzhilin, A., 2005. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions....
    • Elsweiler, D. and Harvey, M., 2015. Towards automatic meal plan recommendations for balanced nutrition. In Proceedings of the 9th ACM Conference...
    • Freyne, J. and Berkovsky, S., 2010. Intelligent food planning: personalized recipe recommendation. In Proceedings of the 15th international...
    • Hammond, K. J., 1989. Case-based Planning: Viewing Planning As a Memory Task. Academic Press Professional, Inc., San Diego, CA, USA. ISBN...
    • Harvey, M., Ludwig, B., and Elsweiler, D., 2013. You are what you eat: Learning user tastes for rating prediction. In String Processing and...
    • Kolodner, J. L., 1987. Capitalizing on failure through case-based inference. Technical report, DTIC Document.
    • Mazzotta, I., De Rosis, F., and Carofiglio, V., 2007. Portia: A user-adapted persuasion system in the healthy-eating domain. Intelligent Systems,...
    • Palanca, J., Heras, S., Botti, V., and Julian, V., 2014. receteame.com: a Persuasive Social Recommendation System. In 12th International Conference...
    • Phanich, M., Pholkul, P., and Phimoltares, S., 2010. Food recommendation system using clustering analysis for diabetic patients. In Information...
    • Schall, D., 2015. Social Network-Based Recommender Systems.
    • Teng, C.-Y., Lin, Y.-R., and Adamic, L. A., 2012. Recipe recommendation using ingredient networks. In Proceedings of the 4th Annual ACM Web...
    • Ueda, M., Takahata, M., and Nakajima, S., 2011. User's food preference extraction for personalized cooking recipe recommendation. Semantic...
    • Van der Aalst, W. M. and Song, M., 2004. Mining Social Networks: Uncovering interaction patterns in business processes. In Business Process...
    • Zhou, X., Xu, Y., Li, Y., Josang, A., and Cox, C., 2012. The state-of-the-art in personalized recommender systems for social networking. Artificial...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno