Ir al contenido

Documat


A Paley-Wiener Theorem for the Spherical Transform Associated with the Generalized Gelfand Pair $(U(p,q),H_{n})$, $p+q=n$

  • Autores: Silvina Campos
  • Localización: Mathematica scandinavica, ISSN 0025-5521, Vol. 119, Nº 2, 2016, págs. 249-282
  • Idioma: inglés
  • DOI: 10.7146/math.scand.a-24746
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this work we prove a Paley-Wiener theorem for the spherical transform associated to the generalized Gelfand pair $(H_n\ltimes U(p,q),H_n)$, where $H_n$ is the $2n+1$-dimensional Heisenberg group. In particular, by using the identification of the spectrum of $(U(p,q),H_n)$ with a subset $\Sigma$ of $\mathbb{R}^2$, we prove that the restrictions of the spherical transforms of functions in $C_{0}^{\infty}(H_n)$ to appropriated subsets of $\Sigma$, can be extended to holomorphic functions on $\mathbb{C}^2$. Also, we obtain a real variable characterizations of such transforms.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno