Let $H$ be a proper subgroup of a discrete group $G$. We introduce a notion of relative inner amenability of $H$ in $G$, we prove some equivalent conditions and provide examples coming mainly from semidirect products, as well as counter-examples. We also discuss the corresponding relative property gamma for pairs of type II$_1$ factors $N\subset M$ and we deduce from this a characterization of discrete, icc groups which do not have property (T).
© 2008-2024 Fundación Dialnet · Todos los derechos reservados