Ir al contenido

Documat


Modelado de sensores basado en la Arquitectura MDA para microrredes eléctricas

  • Gaona García, Elvis Eduardo [1] ; Trujillo Rodríguez, Cesar Leonardo [1] ; Angulo Morales, Víctor Daniel [1]
    1. [1] Universidad Distrital Francisco José de Caldas

      Universidad Distrital Francisco José de Caldas

      Colombia

  • Localización: Elementos, ISSN-e 2248-5252, Vol. 6, Nº. 6, 2016 (Ejemplar dedicado a: Elementos), págs. 69-88
  • Idioma: español
  • DOI: 10.15765/e.v6i6.836
  • Enlaces
  • Resumen
    • En este artículo se propone un modelo basado en la arquitectura MDA (Model Driven Architecture) para el diseño de una red de sensores inalámbricos que monitorea variables de tensión y corriente en una microrred eléctrica. Se describen sus componentes, el módulo sensor, el módulo de procesamiento, y por último el de transmisión de los datos.También se propone un modelo de toma de decisiones compuesto poruna carga, la red principal y una fuente de generación con un sistema de almacenamiento de energía.

  • Referencias bibliográficas
    • H. B. Puttgen, P. R. Macgregor, and F. c. Lambert, “Distributed generation:
    • Semantic hype or the dawn of a new era?,” Power and Energy Magazine, IEEE, no.
    • february 2003, p. 8, 2003.
    • H. Hussein, S. Harb, and N. Kutkut, “Design considerations for distributed microstorage
    • systems in residential applications,” in Telecommunications Energy Conference
    • (INTELEC), 32nd International., 2010, p. 6.
    • R. V. P. Yerra, A. K. Bharathi, P. Rajalakshmi, and U. B. Desai, “WSN based
    • power monitoring in smart grids,” in Intelligent Sensors, Sensor Networks and
    • Information Processing (ISSNIP), 2011 Seventh International Conference on, 2011,
    • pp. 401–406.
    • N. D. Hatziargyriou, S. Member, I. A. Dimeas, S. M. Ieee, A. G. Tsikalakis, and S.
    • Member, “Management of Microgrids Environment in Market.”
    • J. Guerrero, J. Vasquez, J. Matas, L. G. de Vicuña, and M. Castilla, “Hierarchical
    • control of droop-controlled AC and DC microgrids, A general approach toward
    • standardization,” Ind. Electron. IEEE Trans., vol. 58, no. 1, pp. 158–172, 2011.
    • R. Burrett, R. Dixon, M. Eckhart, D. Hales, and A. Kloke-lesch, “Renewable Energy
    • Policy Network for the 21st Century REN21 Steering Committee,” Paris, 2009.
    • K. Shenai and K. Shah, “Smart DC micro-grid for efficient utilization of distributed
    • renewable energy,” Energytech, 2011 IEEE, 2011.
    • W. Jiang and Y. Zhang, “Load Sharing Techniques in Hybrid Power Systems for
    • DC Micro-Grids,” in Power and Energy Engineering Conference (APPEEC), 2011,
    • pp. 1–4.
    • A. Kwasinski and P. Krein, “A microgrid-based telecom power system using modular
    • multiple-input dc-dc converters,” in Telecommunications Conference, 2005.
    • INTELEC’05. Twenty-Seventh International, 2005, pp. 515–520.
    • J. Quesada, R. Sebastián, M. Castro, and J. a. Sainz, “Control of inverters in a low
    • voltage microgrid with distributed battery energy storage. Part I: Primary control,”
    • Electr. Power Syst. Res., vol. 114, pp. 126–135, Sep. 2014.
    • W. Huang, “Power flow analysis of a grid-connected high-voltage microgrid with
    • various distributed resources,” in 2011 Second International Conference on Mechanic
    • Automation and Control Engineering, 2011, pp. 1471–1474.
    • A. G. Kleppe, J. Warmer, W. Bast, and M. D. A. Explained, The model driven
    • architecture: practice and promise. Addison-Wesley Longman Publishing Co., Inc.,
    • Boston, MA, 2003.
    • C. Hahn, C. Madrigal-Mora, and K. Fischer, “A platform-independent metamodel
    • for multiagent systems,” Auton. Agent. Multi. Agent. Syst., vol. 18, no. 2, pp.
    • –266, 2009.
    • G. Benguria, X. Larrucea, B. Elvesaeter, T. Neple, A. Beardsmore, and M. Friess,
    • “A platform independent model for service oriented architectures,” in Enterprise
    • interoperability, Springer, 2007, pp. 23–32.
    • I. Khemapech, “Feasibility Study of Direct Communication in Wireless Sensor
    • Networks,” Procedia Comput. Sci., vol. 21, pp. 424–429, Jan. 2013.
    • F. Escolar, S., Carretero, J., García, F., Isaila, F., “Acabando con los desarrollos
    • Ad-Hoc en Wireless Sensor Networks,” 2006, p. XVII Jornadas de Paralelismo.
    • G. Engels, R. Heckel, and J. M. Kuster, “Rule-based specification of behavioral
    • consistency based on the UML meta-model,” in UML 2001 The Unified Modeling
    • Language. Modeling Languages, Concepts, and Tools, Springer, 2001, pp. 272–286.
    • T. C. Rodrigues, P. V. Dantas, F. C. Delicato, P. F. Pires, C. Miceli, and L. Pirmez,
    • “Using MDA for building wireless sensor network applications,” in Proceedings - 4th
    • Brazilian Symposium on Software Components, Architectures and Reuse, SBCARS
    • , 2010, pp. 110–119.
    • T. Rodrigues, T. Batista, and A. Y. Zomaya, “Model-Driven Approach for Building
    • Efficient Wireless Sensor and Actuator Network Applications,” pp. 43–48, 2013.
    • K. Czarnecki and S. Helsen, “Classification of model transformation approaches,”
    • in Proceedings of the 2nd OOPSLA Workshop on Generative Techniques in the
    • Context of the Model Driven Architecture, 2003, vol. 45, no. 3, pp. 1–17.
    • A. Clark and C. J. Pavlovski, “Wireless Networks for the Smart Energy Grid:
    • Application Aware Networks,” Computer (Long. Beach. Calif)., vol. II, 2010.
    • W. B. Heinzelman, A. L. Murphy, H. S. Carvalho, and M. A. Perillo, “Middleware
    • to support sensor network applications,” Network, IEEE, vol. 18, no. 1, pp. 6–14,

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno