Ir al contenido

Documat


Properties of predictors in overdifferenced nearly nonstationary autoregression

  • Daniel Peña Sánchez de Rivera [1] ; Ismael Sánchez [2]
    1. [1] Universidad Carlos III de Madrid

      Universidad Carlos III de Madrid

      Madrid, España

    2. [2] Universitat d'Alacant

      Universitat d'Alacant

      Alicante, España

  • Localización: Working papers = Documentos de trabajo: Serie AD, Nº. 8, 1999, págs. 1-25
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This paper analyzes the effect of overdifferencing a stationary AR(p+1) process whoselargest root is near unity. It is found that if the process is nearly nonstationary, the estimators ofthe overdifferenced model ARIMA (p, 1, 0) are root-T consistent. It is also found that thismisspecified ARIMA (p, 1, 0) has lower predictive mean squared error, to terms of small order,that the properly specified AR(p+1) model due to its parsimony. The advantage of theoverdifferenced predictor depends on the remaining roots, the prediction horizon, and the meanof the process.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno