We show that for any continuous monotonic bijection $f$ on a $\sigma$-compact subgroup $G\subset \mathbb R$ there exists a binary operation $+_f$ such that $\langle G, +_f\rangle$ is a topological group topologically isomorphic to $\langle G, +\rangle$ and $f$ is a shift with respect to $+_f$. We then show that monotonicity cannot be replaced by a periodic-point free continuous bijections. We explore a few routes leading to generalizations and counterexamples
© 2008-2024 Fundación Dialnet · Todos los derechos reservados