Ir al contenido

Documat


Results about the Alexandroff duplicate space

  • Autores: Khulod Almontashery, Lutfi Kalantan
  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 17, Nº. 2, 2016, págs. 117-122
  • Idioma: inglés
  • DOI: 10.4995/agt.2016.4521
  • Enlaces
  • Resumen
    • In this paper, we present some new results about the  Alexandroff Duplicate Space. We prove that if a space X has the property P, then its Alexandroff Duplicate space A(X) may not have P, where P is one of the following properties: extremally disconnected, weakly extremally disconnected, quasi-normal, pseudo compact. We prove that if X is $\alpha$-normal, epinormal, or has property $\omega D$, then so is A(X). We prove almost normality is preserved by A(X) under special conditions.

  • Referencias bibliográficas
    • P. S. Alexandroff and P. S. and Urysohn, Mémoire sur les espaces topologiques compacts, Verh. Akad. Wetensch. Amsterdam, 14 (1929).
    • S. AlZahrani and L. Kalantan, $C$-normal topological property, Filomat, to appear.
    • A. V. Arhangelskii and L. Ludwig, On $alpha$-normal and $beta$-normal spaces, Comment. Math. Univ. Carolinae. 42, no. 3 (2001), 507-519.
    • E. K. van Douwen, The integers and topology, in: K. Kunen, J. E. Vaughan (Eds.), Handbook of set-Theoretic Topology, North-Holland,Amsterdam,...
    • R. Engelking, General Topology, Vol. 6, Berlin: Heldermann (Sigma series in pure mathematics), Poland, 1989.
    • R. Engelking, On the double circumference of Alexandroff, Bull. Acad. Pol. Sci. Ser. Astron. Math. Phys. 16, no 8 (1968), 629-634.
    • L. Kalantan, Results about $kappa$-normality, Topology and its Applications 125, no. 1 (2002), 47-62.(http://dx.doi.org/10.1016/S0166-8641(01)00258-9)
    • L. Kalantan and F. Allahabi, On almost normality, Demonstratio Mathematica XLI, no. 4 (2008), 961-968.
    • L. Kalantan, $pi$-normal topological spaces, Filomat 22, no. 1 (2008), 173-181.(http://dx.doi.org/10.2298/FIL0801173K)
    • S. Mrówka, On completely regular spaces, Fundamenta Mathematicae 41 (1954), 105-106.
    • P. Nyikos, Axioms, theorems, and problems related to the Jones lemma, General topology Academic Press, New York-London, 1981.
    • K. A. Ross and A. H. Stone, Product of separable spaces, Amer. Math. Month. 71(1964), 398-403.(http://dx.doi.org/10.2307/2313241)
    • L. A. Steen and J. A. Seebach, Counterexamples in topology, Dover Publications, INC., New York, 1995.
    • A. H. Stone, Paracompactness and product spaces, Bull. Amer. Soc. 54 (1948), 977-982. (http://dx.doi.org/10.1090/S0002-9904-1948-09118-2)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno