Ir al contenido

Documat


Induced dynamics on the hyperspaces

  • Autores: Puneet Sharma
  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 17, Nº. 2, 2016, págs. 93-104
  • Idioma: inglés
  • DOI: 10.4995/agt.2016.4154
  • Enlaces
  • Resumen
    •  In this paper, we study the dynamics induced by finite commutative relation on the hyperspaces. We prove that the dynamics induced on the hyperspace by a non-trivial commutative family of continuous self maps cannot be transitive and hence cannot exhibit higher degrees of mixing. We also prove that the dynamics induced on the hyperspace by such a collection cannot have dense set of periodic points. We also give example to show that the induced dynamics in this case may or may not be sensitive.

  • Referencias bibliográficas
    • J. Banks, Chaos for induced hyperspace maps, Chaos, Solitons and Fractals 25 (2005), 681-685.
    • (http://dx.doi.org/10.1016/j.chaos.2004.11.089)
    • G. Beer, Topologies on Closed and Closed Convex Sets, Kluwer Academic Publishers, Dordrecht/Boston/London (1993).
    • L. Block and W. Coppel, Dynamics in one dimension, Springer-Verlag, Berlin Hiedelberg (1992).
    • M. Brin and G. Stuck, Introduction to dynamical systems, Cambridge Unversity Press (2002).
    • (http://dx.doi.org/10.1017/CBO9780511755316)
    • R. L. Devaney, Introduction to chaotic dynamical systems, Addisson Wesley (1986).
    • R. Klaus and P. Rohde, Fuzzy chaos : Reduced chaos in the combined dynamics of several independently chaotic populations, The American Naturalist...
    • (http://dx.doi.org/10.1086/323120)
    • D. Kwietniak and P. Oprocha, Topological entropy and chaos for maps induced on hyperspaces, Chaos Solitions
    • E. Micheal, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71(1951), 152-82.
    • (http://dx.doi.org/10.1090/S0002-9947-1951-0042109-4)
    • G. Di Maio and S. Naimpally, Some notes on hyperspace topologies. Ricerche Mat. 51, no. 1 (2002), 49-60.
    • A. Nagar and P. Sharma, Combined dynamics on hyperspaces, Topology Proceedings 38 (2011), 399-410.
    • S. Naimpally, All hypertopologies are hit-and-miss, Appl. Gen. Topol. 3, no. 1 (2002), 45-53.
    • S. Dirren and H. Davies, Combined dynamics of boundary and interior perturbations in the Eady setting, Journal of the atmospheric Sciences...
    • (http://dx.doi.org/10.1175/15200469(2004)061<1549:CDOBAI>2.0.CO;2)
    • P. Sharma and A. Nagar, Topological dynamics on hyperspaces, Appl. Gen. Topol. 11, no. 1 (2010), 1-19.
    • (http://dx.doi.org/10.3366/nor.2010.0001)
    • P. Sharma and A. Nagar, Inducing sensitivity on hyperspaces, Topology and its Applications 157 (2010), 2052-2058.
    • (http://dx.doi.org/10.1016/j.topol.2010.05.002)
    • J. P. Switkes, E. J. Rossettter, I. A. Co and J. C. Gerdes, Handwheel force feedback for lanekeeping assistance: combined dynamics and stability,...
    • (http://dx.doi.org/10.1115/1.2229256)
    • H. Roman-Flores, A note on transitivity in set valued discrete systems, Chaos, Solitons and Fractals, 17 (2003),99-104.
    • (http://dx.doi.org/10.1016/S0960-0779(02)00406-X)
    • Y. Zhao, S. Yokojima and G. Chen, Reduced density matrix and combined dynamics of electron and nuclei, Journal of Chemical Physics 113, no....
    • (http://dx.doi.org/10.1063/1.1288374)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno