In this paper, we study the dynamics induced by finite commutative relation on the hyperspaces. We prove that the dynamics induced on the hyperspace by a non-trivial commutative family of continuous self maps cannot be transitive and hence cannot exhibit higher degrees of mixing. We also prove that the dynamics induced on the hyperspace by such a collection cannot have dense set of periodic points. We also give example to show that the induced dynamics in this case may or may not be sensitive.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados