Ir al contenido

Documat


Multi-cue visual obstacle detection for mobile robots

  • Autores: Luis Jesús Manso Fernández-Argüelles Árbol académico, Pablo Bustos García de Castro Árbol académico, Pilar Bachiller Burgos Árbol académico, José Moreno del Pozo Árbol académico
  • Localización: JoPha: Journal of Physical Agents, ISSN-e 1888-0258, Vol. 4, Nº. 1, 2010 (Ejemplar dedicado a: Special Session on Workshop of Physical Agents 2009), págs. 3-10
  • Idioma: inglés
  • DOI: 10.14198/jopha.2010.4.1.02
  • Enlaces
  • Resumen
    • Autonomous navigation is one of the most essential capabilities of autonomous robots. In order to navigate autonomously, robots need to detect obstacles. While many approaches achieve good results tackling this problem with lidar sensor devices, vision based approaches are cheaper and richer solutions. This paper presents an algorithm for obstacle detection using a stereo camera pair that overcomes some of the limitations of the existing state of the art algorithms and performs better in many heterogeneous scenarios. We use both geometric and color based cues in order to improve its robustness. The contributions of the paper are improvements to the state of the art on single and multiple cue obstacle detection algorithms and a new heuristic method for merging its outputs.

  • Referencias bibliográficas
    • [1] Hartley, R., & Zisserman, A. (2004). Multiple view geometry in computer vision. Cambridge University Press.
    • [2] Gaspar, J., Santos-Victor, J., & Sentieiro, J. (1994). Ground plane obstacle detection with a stereo vision system. In International...
    • [3] Lobo, J., & Dias, J. (1998). Ground plane detection using visual and inertial data fusion. In International Conference on Electronics...
    • [4] Zhou, Z., & Li, B. (2006). Robust ground plane detection with normalized homography in monocular sequences from a robot platform....
    • [5] Ulrich, I., & Nourbakhsh, I. (2000). Appearance-based obstacle detection with monocular color vision. In Proceedings of the AAAI National...
    • [6] Batavia, P., & Singh, S. (2001). Obstacle detection using adaptive color segmentation and color stereo homography. In International...
    • [7] Abdel-Aziz, Y. I., & Karara, H. M. (1971). Direct linear transformation from comparator coordinates into object space coordinates...
    • [8] Boehler, W., & Marbs, A. (2003). Investigating laser scanner accuracy. Leica Geosystems HDS.
    • [9] Zhou, J., & Li, B. (2006). Homography-based ground detection for a mobile robot platform using a single camera. In International Conference...
    • [10] Bergener, T., Bruckhoff, C., & Igel, C. (2000). Evolutionary parameter optimization for visual obstacle detection. In The International...
    • [11] Ulrich, I., & Borenstein, J. (2000). VFH\: Local obstacle avoidance with look-ahead verification. In International Conference on...
    • [12] Burschka, D., Lee, S., & Hager, G. (2003). Stereo-based obstacle avoidance in indoor environments with active sensor re-calibration....
    • [13] Lenser, S., & Veloso, M. (2003). Visual sonar: Fast obstacle avoidance using monocular vision. In International Conference on Intelligent...
    • [14] Lakhtakia, A. (1992). General schema for the Brewster conditions. Optik, 90, 184–186.
    • [15] Chao, Y., & Changan, Z. (2003). Obstacle detection using adaptive color segmentation and planar projection stereopsis for mobile...
    • [16] Bachiller, P., Bustos, P., & Manso, L. J. (2008). Attentional selection for action in mobile robots. In Advances in Robotics, Automation...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno