Ir al contenido

Documat


An upper bound for the length of a traveling salesman path in the Heisenberg group

  • Sean Li [1] ; Raanan Schul [2]
    1. [1] University of Chicago

      University of Chicago

      City of Chicago, Estados Unidos

    2. [2] Stony Brook University

      Stony Brook University

      Town of Brookhaven, Estados Unidos

  • Localización: Revista matemática iberoamericana, ISSN 0213-2230, Vol. 32, Nº 2, 2016, págs. 391-417
  • Idioma: inglés
  • DOI: 10.4171/RMI/889
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We show that a sufficient condition for a subset E in the Heisenberg group (endowed with the Carnot–Carathéodory metric) to be contained in a rectifiable curve is that it satisfies a modified analogue of Peter Jones’s geometric lemma. Our estimates improve on those of [6], allowing for any power r < 4 to replace the power 2 of the Jones-β-number. This complements in an open ended way our work in [13], where we showed that such an estimate was necessary, however with the power r = 4.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno