Ir al contenido

Documat


Precondicionamiento del método LDG para la ecuación vectorial de Helmholtz

  • Autores: Arlin Alvarado, Paul E. Castillo
  • Localización: Revista de Matemática: Teoría y Aplicaciones, ISSN 2215-3373, ISSN-e 2215-3373, Vol. 23, Nº. 2, 2016, págs. 339-360
  • Idioma: español
  • DOI: 10.15517/rmta.v23i2.25154
  • Títulos paralelos:
    • Preconditioning of the LDG method for the vector Helmholtz equation
  • Enlaces
  • Resumen
    • español

      Se presenta un estudio numérico de un precondicionador para la ecuación vectorial de Helmholtz; el cual se deriva de la técnica del Laplaciano desplazado. Se utiliza una nueva versión del método “Local Discontinuous Galerkin” (LDG) como técnica de discretización espacial. Se valida la escalabilidad del precondicionador mediante una serie de experimentos numéricos en dominios poliédricos y aproximaciones de alto orden en problemas de bajas frecuencias en el caso real.

    • English

      A numerical study of a preconditioner for the vector Helmholtz equation based on the shifted Laplacian preconditioning technique is presented. The Local Discontinuous Galerkin (LDG) method is used as spatial discretization technique. Scalability of the preconditioner is validated on a series of numerical experiments in polyhedral domains for high order approximations on low frecuency problems in the real case.

  • Referencias bibliográficas
    • Airaksinen, T.; Heikkola, E.; Pennanen, A.; Toivanen, J. (2007). “An algebraic multigrid based shifted-Laplacian preconditioner for the Helmholtz...
    • Alvarado, A. (2014) “Método LDG para la Ecuación Vectorial de Helmholtz”, Master’s thesis, Universidad de Puerto Rico at Mayagüez.
    • Alvarado, A.; Castillo, P. (2016) “Computational performance of LDG methods applied to time harmonic Maxwell equation in polyhedral domains”,...
    • Bao, G.; Wei, G.W.; Zhao, S. (2004) “Numerical solution of the Helmholtz equation with high wavenumbers”, Internat. J. Numer. Methods Engrg....
    • Bayliss, A.; Goldstein, C.; Turkel, E. (1983) “An iterative method for the Helmholtz equation”, J. Comput. Phys. 49(3): 443–457.
    • Bermúdez, A.; Bullón, J.; Pena, F. (1998) “A finite element method for the thermoelectrical modelling of electrodes”, Commun. Numer. Meth....
    • Brenner, S.; Li, F.; Sung, L. (2006) “A locally divergence-free nonconforming finite element method for the time-harmonic Maxwell’s equations”,...
    • Castillo, P. (2002) “Performance of discontinuous Galerkin methods for elliptic PDE’s”, SIAM J. Sci. Comput. 24(2): 524–547.
    • Castillo, P. (2010) “Stencil reduction algorithms for the Local Discontinuous Galerkin method”, Internat. J. Numer. Methods Engrg. 81: 1475–1491.
    • Castillo, P.; Cockburn, B.; Perugia, I.; Schötzau, D. (2000) “An a priori error analysis of the Local Discontinuous Galerkin method for elliptic...
    • Castillo, P.; Sequeira, F. (2013) “Computational aspects of the Local Discontinuous Galerkin method on unstructured grids in three dimensions”,...
    • Castillo, P.; Velázquez, E. (2008) “A numerical study of a semi-algebraic multilevel preconditioner for the Local Discontinuous Galerkin method”,...
    • Clain, S.; Rappaz, J.; Swierkosz, M.; Touzani, R. (1993) “Numerical modeling of induction heating for two-dimensional geometries”, Mathematical...
    • Cockburn, B.; Shu, C.W. (1998) “The Local Discontinuous Galerkin method for time-dependent convection-diffusion systems”, SIAM J. Num. Anal....
    • Demkowicz, L.; Vardapetyan, L. (1998) “Modeling of electromagnetic absorption/scattering problems using hp-adaptive finite elements”, Comput....
    • Van der Vorst, H.A. (1992) “Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems”, SIAM...
    • Dolean, V.; Fol, H.; Lanteri, S.; Perrussel, R. (2008) “Solution of the time-harmonic Maxwell equations using Discontinuous Galerkin methods”,...
    • El-Azab, A.; Garnich, M.; Kapoor, A. (2003) “Modeling of the electromagnetic forming of sheet metals: state-of-art an future needs”, Journal...
    • Erlangga, Y.A.; Oosterlee, C.W.; Vuik, C. (2006) “A novel multigrid based preconditioner for heterogeneous Helmholtz problems”, SIAM J. Sci....
    • Erlangga, Y.A.; Vuik, C.; Oosterlee, C.W. (2004) “On the class of preconditioners for solving Helmholtz equation”, Appl. Numer. Math. 50(3-4):...
    • Greif, C.; Schötzau, D. (2007) “Preconditioners for the discretized time-harmonic Maxwell equation in mixed form”, Numerical Linear Algebra...
    • Houston, P.; Perugia, I.; Schneebeli, A.; Schötzau, D. (2005) “Mixed Discontinuous Galerkin approximation of the Maxwell Operator: The indefinite...
    • Houston, P.; Perugia, I.; Schneebeli, A.; Schötzau, D. (2005) “Interior penalty method for the indefinite time-harmonic Maxwell’s equations”,...
    • Li, D.; Greif, C.; Schötzau, D. (2012) “Parallel numerical solution of the time-harmonic Maxwell equations in mixed form”, Numerical Linear...
    • Maxwell, J.C. (1865) “A dynamical theory of the electromagnetic field”, Phil. Trans. Royal Society Lond. 155: 459–512.
    • Maxwell, J.C. (1873) A Treatise on Electricity and Magnetism. Clarendon Press, Oxford.
    • Perugia, I.; Schötzau, D. (2003) “The hp-local discontinuous Galerkin method for low-frecuency time-harmonic Maxwell’s equations”, Math. Comp....
    • Perugia, I.; Schötzau, D.; Monk, P. (2002) “Stabilized interior penalty methods for the time-harmonic Maxwell’s equations”, Comput. Methods...
    • Reitzinger, S.; Schöberl, J. (2002) “An algebraic multigrid method for finite element discretizations with edge elements”, Numer. Linear Algebra...
    • Saad, Y. (2001) Iterative Methods for Large Sparse Linear Systems, Second edition. Society for Industrial and Applied Mathematics, Philadelphia...
    • Theran, C. (2014) “Factorización incompleta IC(l, τ,m) por bloques para matrices generadas por métodos Local Discontinuous Galerkin”. Master’s...
    • Tuncer, E.; Lee, B.T.; Islam, M.S.; Neikirk, D.P. (1994) “Quasi-static conductor loss calculations in transmission lines using a new conformal...
    • Zienkiewicz, O. (2000) “Achievements and some unsolved problems of the finite element method”, Internat. J. Numer. Methods Engrg. 47(1-3):...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno