Ir al contenido

Documat


Sur Le Produit Tensoriel D'algèbres

  • Autores: Mohamed Tabaâ
  • Localización: Mathematica scandinavica, ISSN 0025-5521, Vol. 119, Nº 1, 2016, págs. 5-13
  • Idioma: inglés
  • DOI: 10.7146/math.scand.a-24181
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let $\sigma \colon A\rightarrow B$ and $\rho \colon A\rightarrow C$ be two homomorphisms of noetherian rings such that $B\otimes_{A}C$ is a noetherian ring. We show that if $\sigma$ is a regular (resp. complete intersection, resp. Gorenstein, resp. Cohen-Macaulay, resp. ($S_{n}$), resp. almost Cohen-Macaulay) homomorphism, so is $\sigma\otimes I_{C}$ and the converse is true if $\rho$ is faithfully flat. We deduce the transfer of the previous properties of $B$ and $C$ to $B\otimes_{A}C$, and then to the completed tensor product $B\mathbin{\hat\otimes}_{A}C$. If $B\otimes_{A}B$ is noetherian and $\sigma$ is flat, we give a necessary and sufficient condition for $B\otimes_{A}B$ to be a regular ring.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno