Ir al contenido

Documat


Transmuted geometric distribution with applications in modelling and regression analysis of count data

  • Subrata Chakraborty [1] ; Deepesh Bhati [2]
    1. [1] Dibrugarh University

      Dibrugarh University

      India

    2. [2] Central University of Rajasthan

      Central University of Rajasthan

      India

  • Localización: Sort: Statistics and Operations Research Transactions, ISSN 1696-2281, Vol. 40, Nº. 1, 2016, págs. 153-176
  • Idioma: inglés
  • Enlaces
  • Resumen
    • A two-parameter transmuted geometric distribution is prop osed as a new generalization of the geometric distribution by employing the quadratic transmu tation techniques of Shaw and Buckley.

      The additional parameter plays the role of controlling the t ail length. Distributional properties of the proposed distribution are investigated. Maximum likel ihood estimation method is discussed along with some data fitting experiments to show its advantag es over some existing distributions in literature. The tail flexibility of density of aggregate l oss random variable assuming the proposed distribution as primary distribution is outlined and prese nted along with a illustrative modelling of aggregate claim of a vehicle insurance data. Finally, we pre sent a count regression model based on the proposed distribution and carry out its comparison wi th some established models

  • Referencias bibliográficas
    • Antzoulakos, D. and Chadjiconstantinidis, S. (2004). On mixed and compound mixed Poisson distributions. Scandinavian Actuarial Journal, 3,...
    • Chakraborty, S. and Gupta, R. D. (2015). Exponentiated geometric distribution: another generalization of geometric distribution. Communication...
    • Chakraborty, S.(2015). Generation of discrete analogues of continuous distributions-a survey of methods and constructions. Journal of Statistical...
    • Consul, P. C. and Famoye, F. (1992). Generalized Poisson regression model. Communication in StatisticsTheory and Methods, 2, 89–109.
    • Deb, P. and Trivedi, P. K. (1997). Demand for medical care by the Elderly: a finite mixture approach. Journal of Applied Econometrics, 12,...
    • Drouet-Mari, D, Kotz, S. (2001). Correlation and Dependence. Imperial College press, London.
    • Gómez-Déniz, E. (2010). Another generalization of the geometric distribution. Test, 19, 399–415.
    • Gómez-Déniz, E., Sarabia, J. M. and Odeja, E. C. (2011). A new discrete distribution with actuarial applications. Insurance: Mathematics...
    • Greene, W. (2008). Functional forms for the negative binomial model for count data. Economics Letter, 99, 585–590.
    • Jain, G. C. and Consul, P. C. (1971). A generalized negative binomial distribution. SIAM Journal of Applied Mathematics, 21, 501–513.
    • Johnson, N. L. Kemp, A. W. and Kotz, S. (2005). Univariate Discrete Distributions. 2nd ed. Wiley, New York.
    • Jong, D. P. and Heller, G. Z. (2008). Generalized Linear Models for Insurance Data. Cambridge University Press, Cambridge.
    • Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2008). Loss Models: From Data to Decisions. 3rd ed. John Wiley and Sons, New York, 3, 161–188.
    • Kozubowski, T.J. and Podgórski, K. (2016). Transmuted distributions and random extrema. Statistics and Probability Letters, available online...
    • Makc̆utek, J. (2008). A generalization of the geometric distribution and its application in quantitative linguistics. Romanian Rep Phys,...
    • Mirhossaini, S. M. and Dolati, A. (2008). On a new generalization of the exponential distribution. Journal of Mathematical Extension, 3, 27–42.
    • Oguntunde, P. E. and Adejumo, A. O. (2015). The transmuted inverse exponential distribution. International Journal of Advanced Statistics...
    • Owoloko, E. A., Oguntunde, P. E. and Adejumo, A. O. (2015). Performance rating of the transmuted exponential distribution: an analytical approach....
    • Philippou, A. N., Georghiou, C. and Philippou, G. N. (1983). A generalized geometric distribution and some of its properties. Statistics and...
    • Rolski, T., Schmidli, H., Schmidt, V. and Teugel, J. (1999). Stochastic Processes for Insurance and Finance. John Wiley and Sons, New York.
    • Sastry, D. V. S., Bhati, D., Rattihalli, R. N. and Gómez-Déniz, E.(2004). On zero distorted generalized geometric distribution. Communication...
    • Shaw, W. and Buckley, I. (2007). The alchemy of probability distributions: beyond GramCharlier expansions and a skew-kurtotic-normal distribution...
    • Tripathi, R. C., Gupta, R. C. and White, T. J.(1987). Some generalizations of the geometric distribution. Sankhyā, Series B, 49, 218–223.
    • Tse, Yiu-Kuen (2009). Non-life Actuarial Models Theory, Methods and Evaluation. Cambridge University Press, UK.
    • Vuong, Q. H. (1989). Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica, 57, 307–333.
    • Warde, W. D. and Katti, S. K.(1971). Infinite divisibility of discrete distributions II. Annual of Mathematical Statistics, 42, 1088–1090.
    • Willmot, G. E. (1987). The Poisson-inverse Gaussian distribution as an alternative to the negative binomial. Scandinavian Actuarial Journal,...
    • Yang, Z., Hardin, J. W. and Addy, C. L. (2009). A score test for overdispersion in Poisson regression based on the generalized Poisson-2 model....
    • Yousof, H. M., Afify, A. Z., Alizadeh, M., Butt, N. S., Hamedani, G. G. and Ali, M. M. (2015). The Transmuted exponentiated generalized-G...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno