Ir al contenido

Documat


The Kato Square Root Problem follows from an extrapolation property of the Laplacian

  • Autores: Moritz Egert, Robert Haller-Dintelmann, Patrick Tolksdorf
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 60, Nº 2, 2016, págs. 451-483
  • Idioma: inglés
  • DOI: 10.5565/10.5565/PUBLMAT-60216_05
  • Enlaces
  • Resumen
    • On a domain Ω ⊆  _ Rd we consider second-order elliptic systems in divergence-form with bounded complex coefficients, realized via a sesquilinear form with domain H1/0 (Ω) ⊆ V ⊆ H1 (Ω). Under very mild assumptions on  Ω and V we show that the solution to the Kato Square Root Problem for such systems can be deduced from a regularity result for the fractional powers of the negative Laplacian in the same geometric setting. This extends earlier results of McIntosh [25] and Axelsson-Keith-McIntosh [6] to non-smooth coefficients and domains.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno