On a domain Ω ⊆ _ Rd we consider second-order elliptic systems in divergence-form with bounded complex coefficients, realized via a sesquilinear form with domain H1/0 (Ω) ⊆ V ⊆ H1 (Ω). Under very mild assumptions on Ω and V we show that the solution to the Kato Square Root Problem for such systems can be deduced from a regularity result for the fractional powers of the negative Laplacian in the same geometric setting. This extends earlier results of McIntosh [25] and Axelsson-Keith-McIntosh [6] to non-smooth coefficients and domains.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados