Ir al contenido

Documat


A gene selection approach based on clustering for classification tasks in colon cancer

  • CASTELLANOS GARZÓN, José Antonio [1] ; RAMOS GONZÁLEZ, Juan [2]
    1. [1] Universidade de Coimbra

      Universidade de Coimbra

      Coimbra (Sé Nova), Portugal

    2. [2] Instituto de Investigación Biomédica de Salamanca

      Instituto de Investigación Biomédica de Salamanca

      Salamanca, España

  • Localización: ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal, ISSN-e 2255-2863, Vol. 4, Nº. 3, 2015, págs. 1-10
  • Idioma: inglés
  • DOI: 10.14201/ADCAIJ201543110
  • Enlaces
  • Resumen
    • Gene selection (GS) is an important research area in the analysis of DNA-microarray data, since it involves gene discovery meaningful for a particular target annotation or able to discriminate expression profiles of samples coming from different populations. In this context, a wide number of filter methods have been proposed in the literature to identify subsets of relevant genes in accordance with prefixed targets. Despite the fact that there is a wide number of proposals, the complexity imposed by this problem (GS) remains a challenge. Hence, this paper proposes a novel approach for gene selection by using cluster techniques and filter methods on the found groupings to achieve informative gene subsets. As a result of applying our methodology to Colon cancer data, we have identified the best informative gene subset between several one subsets. According to the above, the reached results have proven the reliability of the approach given in this paper.

  • Referencias bibliográficas
    • Alon, U., Barkai, N., Notterman, D. A., Gish, K., Ybarra, S., Mack, D., and Levine, A. J., 1999. Broad patterns of gene expression revealed...
    • Balaguer, F., 2014. Cáncer colorrectal familiar y hereditario. Gastroenterología y Hepatología, 37:77–84. Berrar, D. P., Dubitzky, W., and...
    • Bourne, P. E. and Wissig, H., 2003. Structural Bioinformatics. Wiley-Liss, Inc., Hoboken, New Jersey. Castellanos-Garzón, J. A. and Díaz,...
    • Castellanos-Garzón, J. A., García, C. A., Novais, P., and Díaz, F., 2013. A Visual Analytics Framework for Cluster Analysis of DNA Microarray...
    • Eisen, M., Spellman, T., Brown, P., and Botstein, D., 1998. Cluster Analysis and Display of Genome-wide Expression Patterns. Proceedings of...
    • Geoffrey, J. M., Do, K. A., and Ambroise, C., 2004. Analyzing Microarray Gene Expression Data. John Wiley & Sons, Inc., Hoboken, New Jersey.
    • Han, J. and Kamber, M., 2006. Data Mining: Concepts and Techniques. Elsevier Inc.
    • Haraldsdottir, S., Einarsdottir, H., Smaradottir, A., Gunnlaugsson, A., and Halfdanarson, T., 2014. Colorectal cancer-review. Laeknabladid,...
    • Inza, I., Larrañaga, P., Blanco, R., and Cerrolaza, A., 2004. Filter versus wrapper gene selection approaches in DNA microarray domains. Artificial...
    • Jass, J., 2007. Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology,...
    • Jiang, D., Tang, C., and Zhang, A., 2004. Cluster Analysis for Gene Expression Data: A Survey. IEEE Transactions on Knowledge and Data Engineering,...
    • Kaufman, L. and Rousseeuw, P. J., 2005. Finding Groups in Data. An Introduction to Clustering Analysis. John Wiley & Sons, Inc., Hoboken,...
    • Kim, S.-E., Paik, H., Yoon, H., Lee, J. E., Kim, N., and Sung, M.-K., 2015. Sex- and gender-specific disparities in colorectal cancer risk....
    • Lazar, C., Taminau, J., Meganck, D., S.and Steenhoff, Coletta, A., Molter, V., C.and deSchaetzen, Duque, H., R.and Bersini, and Nowé, A.,...
    • Markowitz, S. and Bertagnolli, M., 2009. Molecular basis of colorectal cancer. New England Journal of Medicine, 25(361):2449–2460.
    • Martens, D., Baesens, B., Van, T. G., and Vanthienen, J., 2007. Comprehensible credit scoring models using rule extraction from support vector...
    • Natarajan, A. and Ravi, T., 2014. A Survey on Gene feature selection using microarray data for cancer classification. International Journal...
    • Perea, J., Lomas, M., and Hidalgo, M., 2011. Molecular basis of colorrectal cancer: towards an individualized management. Revista Española...
    • Shraddha, S. and Anuradha, S., N.and Swapnil, 2014. Feature Selection Techniques and Microarray Data: A Survey. International Journal of Emerging...
    • Tyagi, V. and Mishra, A., 2013. A Survey on Different Feature Selection Methods for Microarray Data Analysis. International Journal of Computer...
    • Vapnik, V., 1995. The nature of statistical learning theory. Springer, New York.
    • Wang, Y., Tetko, I., Hall, M., Frank, E., Facius, A., Mayer, K., and Mewes, H., 2005. Gene selection from microarray data for cancer classification...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno