Ir al contenido

Documat


Document-level adverse drug reaction event extraction on electronic health records in Spanish

  • Autores: Sara Santiso, Arantza Casillas Rubio Árbol académico, Alicia I. Pérez de Pereyra, Maite Oronoz Anchordoqui Árbol académico, Koldobika Gojenola Galletebeitia Árbol académico
  • Localización: Procesamiento del lenguaje natural, ISSN 1135-5948, Nº. 56, 2016, págs. 49-56
  • Idioma: inglés
  • Títulos paralelos:
    • Extracción a nivel de documento de reacciones adversas a medicamentos en informes médicos electrónicos en español
  • Enlaces
  • Resumen
    • español

      Presentamos un sistema de extracción de Reacciones Adversas a Medicamentos (RAMs) para Informes Médicos Electrónicos escritos en español. El objetivo del sistema es asistir a expertos en farmacia cuando tienen que decidir si un paciente padece o no una o más RAMs. El núcleo del sistema es un modelo predictivo inferido de un corpus etiquetado manualmente, que cuenta con características semánticas y sintácticas. Este modelo es capaz de extraer RAMs de parejas enfermedad-medicamento en un informe dado. Finalmente, las RAMs extraídas automáticamente son post-procesadas usando un heurístico para presentar la información de una forma compacta. Esta fase ofrece los medicamentos y enfermedades del documento con su frecuencia, y también une las parejas relacionadas como RAMs. En resumen, el sistema no sólo presenta las RAMs en el texto sino que también da información concisa a petición de los expertos en farmacia (los usuarios potenciales del sistema).

    • English

      We outline an Adverse Drug Reaction (ADRs) extraction system for Electronic Health Records (EHRs) written in Spanish. The goal of the system is to assist experts on pharmacy in making the decision of whether a patient suffers from one or more ADRs. The core of the system is a predictive model inferred from a manually tagged corpus that counts on both semantic and syntactically features. This model is able to extract ADRs from disease-drug pairs in a given EHR. Finally, the ADRs automatically extracted are post-processed using a heuristic to present the information in a compact way. This stage reports the drugs and diseases of the document together with their frequency, and it also links the pairs related as ADRs. In brief, the system not only presents the ADRs in the text but also provides concise information on request by experts in pharmacy (the potential users of the system).

  • Referencias bibliográficas
    • Aramaki, E., Y. Miura, M. Tonoike, T. Ohkuma, H. Masuichi, K. Waki, and K. Ohe. 2010. Extraction of adverse drug effects from clinical records....
    • Bretonnel, K. and D. Demmer-Fushman. 2014. Biomedical Natural Language Processing, volume 11. John Benjamins Publishing Company.
    • Cohen, K.B. and D. Demner-Fushman. 2014. Biomedical Natural Language Processing. Natural Language Processing. John Benjamins Publishing Company.
    • de la Peña, S., I. Segura-Bedmar, P. Mart́ınez, and J.L. Mart́ınezFernández. 2014. ADR Spanish tool: a tool for extracting adverse...
    • Deléger, L., C. Grouin, and P. Zweigenbaum. 2010. Extracting medical information from narrative patient records: the case of medication-related...
    • Friedman, N., D. Geiger, and M. Goldszmidt. 1997. Bayesian network classifiers. Machine Learning, 29(2-3):131–163.
    • Gojenola, K., M. Oronoz, A. Pérez, and A. Casillas. 2014. IxaMed: Applying freeling and a perceptron sequential tagger at the shared task...
    • Grigonyte, G., M. Kvist, S. Velupillai, and M. Wirén. 2014. Improving readability of swedish electronic health records through lexical simplification:...
    • Gurulingappa, H., J. Fluck, M. HofmannApitius, and L. Toldo. 2011. Identification of adverse drug event assertive sentences in medical case...
    • Hall, M., E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. Witten. 2009. The WEKA data mining software: An update. SIGKDD Explorations,...
    • Japkowicz, N. and S. Stephen. 2002. The class imbalance problem: A systematic study. Intelligent data analysis, 6(5):429– 449.
    • Karlsson, S., J. Zhao, L. Asker, and H. Boström. 2013. Predicting adverse drug events by analyzing electronic patient records. In Proceedings...
    • Kubat, M. and S. Matwin. 1997. Addressing the curse of imbalanced training sets: one-sided selection. In ICML, volume 97, pages 179–186. Nashville,...
    • Laippala, V., F. Ginter, S. Pyysalo, and T. Salakoski. 2009. Towards automated processing of clinical finnish: Sublanguage analysis and a...
    • Li, Q., L. Deléger, T. Lingren, H. Zhai, M. Kaiser, L. Stoutenborough, A.G. Jegga, K.B. Cohen, and I. Solti. 2013. Mining fda drug labels...
    • Mollineda, R.A., R. Alejo, and J.M. Sotoca. 2007. The class imbalance problem in pattern classification and learning. In II Congreso Español...
    • Oronoz, M., A. Casillas, K. Gojenola, and A. Pérez. 2013. Automatic annotation of medical records in Spanish with disease, drug and substance...
    • Oronoz, M., K. Gojenola, A. Pérez, A. Dı́az de Ilarraza, and A. Casillas. 2015. On the creation of a clinical gold standard corpus in...
    • Segura-Bedmar, I., P. Mart́ınez, R. Revert, and J. Moreno-Schneider. 2015. Exploring spanish health social media for detecting drug effects....
    • Sohn, S., JP. Kocher, C. Chute, and G. Savova. 2011. Drug side effect extraction from clinical narratives of psychiatry and psychology patients....
    • Wang, X., G. Hripcsak, M. Markatou, and C. Friedman. 2009. Active computerized pharmacovigilance using natural language processing, statistics,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno