Alicia I. Pérez de Pereyra, Arantza Casillas Rubio , Koldobika Gojenola Galletebeitia , Maite Oronoz Anchordoqui , Nerea Aguirre Lobo, Estibaliz Amillano
La red de hospitales que configuran el sistema español de sanidad utiliza la Clasificación Internacional de Enfermedades Modificación Clínica (ICD9-CM) para codificar partes de alta hospitalaria. Hoy en día, este trabajo lo realizan a mano los expertos. Este artículo aborda la problemática de clasificar automáticamente partes reales de alta hospitalaria escritos en español teniendo en cuenta el estándar ICD9-CM. El desafío radica en que los partes hospitalarios están escritos con lenguaje espontáneo. Hemos experimentado con varios sistemas de aprendizaje automático para solventar este problema de clasificación. El algoritmo Random Forest es el más competitivo de los probados, obtiene un F-measure de 0.876.
Hospitals attached to the Spanish Ministry of Health are currently using the International Classification of Diseases 9 Clinical Modification (ICD9-CM) to classify health discharge records. Nowadays, this work is manually done by experts. This paper tackles the automatic classification of real Discharge Records in Spanish following the ICD9-CM standard. The challenge is that the Discharge Records are written in spontaneous language. We explore several machine learning techniques to deal with the classification problem. Random Forest resulted in the most competitive one, achieving an F-measure of 0.876.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados