Ir al contenido

Documat


On the definition and examples of Finsler metrics

  • Miguel Angel Javaloyes [1] Árbol académico ; Miguel Sánchez [2] Árbol académico
    1. [1] Universidad de Murcia

      Universidad de Murcia

      Murcia, España

    2. [2] Universidad de Granada

      Universidad de Granada

      Granada, España

  • Localización: Annali della Scuola Normale Superiore di Pisa. Classe di scienze, ISSN 0391-173X, Vol. 13, Nº 3, 2014, págs. 813-858
  • Idioma: inglés
  • DOI: 10.2422/2036-2145.201203_002
  • Enlaces
  • Resumen
    • For a standard Finsler metric F on a manifold M, the domain is the whole tangent bundle T M and the fundamental tensor g is positive-definite. However, in many cases (for example, for the well-known Kropina and Matsumoto metrics), these two conditions hold in a relaxed form only, namely one has either a pseudo-Finsler metric (with arbitrary g) or a conic Finsler metric (with domain a “conic” open domain of T M).

      Our aim is twofold. First, we want to give an account of quite a few subtleties that appear under such generalizations, say, for conic pseudo-Finsler metrics (including, as a preliminary step, the case of Minkowski conic pseudo-norms on an affine space). Second, we aim to provide some criteria that determine when a pseudo-Finsler metric F obtained as a general homogeneous combination of Finsler metrics and one-forms is again a Finsler metric – or, more precisely, that the conic domain on which g remains positive-definite. Such a combination generalizes the known (↵, ")-metrics in different directions. Remarkably, classical examples of Finsler metrics are reobtained and extended, with explicit computations of their fundamental tensors.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno