Ir al contenido

Documat


From Taylor interpolation to Hermite interpolation via duality

  • Autores: Marie-Laurence Mazure
  • Localización: Jaen journal on approximation, ISSN 1889-3066, ISSN-e 1989-7251, Vol. 4, Nº. 1, 2012, págs. 15-45
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • The present work concerns W-spaces, that is, spaces which permit Taylor interpolation on a given interval. We introduce the critical length of any given W-space E as the supremum of all positive h ensuring that E permits Hermite interpolation (i.e., E is an Extended Chebyshev space) on any subinterval of length h. The critical length may be equal to 0, but it is always positive if the interval is closed and bounded. Any W-space is allocated to a dual space. When the dual space is a W-space in turn, we can take advantage of its presence to calculate the critical length.

      The notion of critical length was first introduced in [3] for null spaces of linear differential operator with constant coefficients. As a special case, the use of duality gives new insights into the practical expressions to obtain the critical length of such null spaces


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno