Ir al contenido

Documat


Discrete versions of the transport equation and the Shepp–Olkin conjecture

  • Hillion, Erwan [1] ; Johnson, Oliver [2]
    1. [1] University of Luxembourg

      University of Luxembourg

      Luxemburgo

    2. [2] University of Bristol

      University of Bristol

      Reino Unido

  • Localización: Annals of probability: An official journal of the Institute of Mathematical Statistics, ISSN 0091-1798, Vol. 44, Nº. 1, 2016, págs. 276-306
  • Idioma: inglés
  • DOI: 10.1214/14-AOP973
  • Enlaces
  • Resumen
    • We introduce a framework to consider transport problems for integer-valued random variables. We introduce weighting coefficients which allow us to characterize transport problems in a gradient flow setting, and form the basis of our introduction of a discrete version of the Benamou–Brenier formula. Further, we use these coefficients to state a new form of weighted log-concavity. These results are applied to prove the monotone case of the Shepp–Olkin entropy concavity conjecture.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno